Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Front Immunol ; 15: 1430938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114664

RESUMO

Severe aplastic anemia (SAA) is a life-threatening bone marrow failure syndrome whose development can be triggered by environmental, autoimmune, and/or genetic factors. The latter comprises germ line pathogenic variants in genes that bring about habitually predisposing syndromes as well as immune deficiencies that do so only occasionally. One of these disorders is the autosomal dominant form of chronic mucocutaneous candidiasis (CMC), which is defined by germ line STAT1 gain-of-function (GOF) pathogenic variants. The resultant overexpression and constitutive activation of STAT1 dysregulate the Janus kinase/signal transducer and activator of transcription 1 (STAT) signaling pathway, which normally organizes the development and proper interaction of different components of the immunologic and hematopoietic system. Although SAA is an extremely rare complication in this disorder, it gained a more widespread interest when it became clear that the underlying causative pathomechanism may, in a similar fashion, also be instrumental in at least some of the idiopathic SAA cases. Based on these premises, we present herein what is the historically most likely first cord blood-transplanted SAA case in a CMC family with a documented STAT1 GOF pathogenic variant. In addition, we recapitulate the characteristics of the six CMC SAA cases that have been reported so far and discuss the significance of STAT1 GOF pathogenic variants and other STAT1 signaling derangements in the context of these specific types of bone marrow failure syndromes. Because a constitutively activated STAT1 signaling, be it driven by STAT1 GOF germ line pathogenic variants or any other pathogenic variant-independent events, is apparently important for initiating and maintaining the SAA disease process, we propose to acknowledge that SAA is one of the definite disease manifestations in STAT1-mutated CMC cases. For the same reason, we deem it necessary to also incorporate molecular and functional analyses of STAT1 into the diagnostic work-up of SAA cases.


Assuntos
Anemia Aplástica , Candidíase Mucocutânea Crônica , Fator de Transcrição STAT1 , Adulto , Feminino , Humanos , Masculino , Anemia Aplástica/genética , Candidíase Mucocutânea Crônica/genética , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Linhagem , Estudos Retrospectivos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
2.
J Physiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106251

RESUMO

ClC-K/barttin channels are involved in the transepithelial transport of chloride in the kidney and inner ear. Their physiological role is crucial in humans because mutations in CLCNKB or BSND, encoding ClC-Kb and barttin, cause Bartter's syndrome types III and IV, respectively. In vitro experiments have shown that an amino acid change in a proline-tyrosine motif in the C-terminus of barttin stimulates ClC-K currents. The molecular mechanism of this enhancement and whether this potentiation has any in vivo relevance remains unknown. We performed electrophysiological and biochemical experiments in Xenopus oocytes and kidney cells co-expressing ClC-K and barttin constructs. We demonstrated that barttin possesses a YxxØ motif and, when mutated, increases ClC-K plasma membrane stability, resulting in larger currents. To address the impact of mutating this motif in kidney physiology, we generated a knock-in mouse. Comparing wild-type (WT) and knock-in mice under a standard diet, we could not observe any difference in ClC-K and barttin protein levels or localization, either in urinary or plasma parameters. However, under a high-sodium low-potassium diet, known to induce hyperplasia of distal convoluted tubules, knock-in mice exhibit reduced hyperplasia compared to WT mice. In summary, our in vitro and in vivo studies demonstrate that the previously identified PY motif is indeed an endocytic YxxØ motif in which mutations cause a gain of function of the channel. KEY POINTS: It is revealed by mutagenesis and functional experiments that a previously identified proline-tyrosine motif regulating ClC-K plasma membrane levels is indeed an endocytic YxxØ motif. Biochemical characterization of mutants in the YxxØ motif in Xenopus oocytes and human embryonic kidney cells indicates that mutants showed increased plasma membrane levels as a result of an increased stability, resulting in higher function of ClC-K channels. Mutation of this motif does not affect barttin protein expression and subcellular localization in vivo. Knock-in mice with a mutation in this motif, under conditions of a high-sodium low-potassium diet, exhibit less hyperplasia in the distal convoluted tubule than wild-type animals, indicating a gain of function of the channel in vivo.

3.
Int Immunopharmacol ; 140: 112755, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098225

RESUMO

STAT3 gain-of-function syndrome, characterized by early-onset autoimmunity and primary immune regulatory disorder, remains poorly understood in terms of its immunological mechanisms. We employed whole-genome sequencing of familial trios to elucidate the pivotal role of de novo mutations in genetic diseases. We identified 37 high-risk pathogenic loci affecting 23 genes, including a novel STAT3 c.508G>A mutation. We also observed significant down-regulation of pathogenic genes in affected individuals, potentially associated with inflammatory responses regulated by PTPN14 via miR378c. These findings enhance our understanding of the pathogenesis of STAT3 gain-of-function syndrome and suggest potential therapeutic strategies. Notably, combined JAK inhibitors and IL-6R antagonists may offer promising treatment avenues for mitigating the severity of STAT3 gain-of-function syndrome.

4.
Methods Mol Biol ; 2836: 285-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995546

RESUMO

The Gene Ontology (GO) project describes the functions of the gene products of organisms from all kingdoms of life in a standardized way, enabling powerful analyses of experiments involving genome-wide analysis. The scientific literature is used to convert experimental results into GO annotations that systematically classify gene products' functions. However, to address the fact that only a minor fraction of all genes has been characterized experimentally, multiple predictive methods to assign GO annotations have been developed since the inception of GO. Sequence homologies between novel genes and genes with known functions help to approximate the roles of these non-characterized genes. Here we describe the main sequence homology methods to produce annotations: pairwise comparison (BLAST), protein profile models (InterPro), and phylogenetic-based annotation (PAINT). Some of these methods can be implemented with genome analysis pipelines (BLAST and InterPro2GO), while PAINT is curated by the GO consortium.


Assuntos
Biologia Computacional , Ontologia Genética , Anotação de Sequência Molecular , Anotação de Sequência Molecular/métodos , Biologia Computacional/métodos , Filogenia , Software , Homologia de Sequência , Bases de Dados Genéticas , Humanos
5.
Function (Oxf) ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38984987

RESUMO

Polycystic kidney disease (PKD), a disease characterized by enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. TRPV4, a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.

6.
Sci Rep ; 14(1): 16562, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020064

RESUMO

Due to considerable global prevalence and high recurrence rate, the pursuit of effective new medication for epilepsy treatment remains an urgent and significant challenge. Drug repurposing emerges as a cost-effective and efficient strategy to combat this disorder. This study leverages the transformer-based deep learning methods coupled with molecular binding affinity calculation to develop a novel in-silico drug repurposing pipeline for epilepsy. The number of candidate inhibitors against 24 target proteins encoded by gain-of-function genes implicated in epileptogenesis ranged from zero to several hundreds. Our pipeline has repurposed the medications with most anti-epileptic drugs and nearly half psychiatric medications, highlighting the effectiveness of our pipeline. Furthermore, Lomitapide, a cholesterol-lowering drug, first emerged as particularly noteworthy, exhibiting high binding affinity for 10 targets and verified by molecular dynamics simulation and mechanism analysis. These findings provided a novel perspective on therapeutic strategies for other central nervous system disease.


Assuntos
Anticonvulsivantes , Aprendizado Profundo , Reposicionamento de Medicamentos , Epilepsia , Simulação de Dinâmica Molecular , Reposicionamento de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Simulação por Computador
7.
Viruses ; 16(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39066211

RESUMO

The human immunodeficiency virus (HIV-1) matrix protein p17 (p17) is released from infected cells as a protein capable of deregulating the biological activity of different cells. P17 variants (vp17s), more frequently detected in the plasma of HIV-1+ patients with rather than without lymphoma and characterized by amino acids insertions in their C-terminal region, were found to trigger B cell growth and clonogenicity. Vp17s endowed with B-cell-growth-promoting activity are drastically destabilized, whereas, in a properly folded state, reference p17 (refp17) does not exert any biological activity on B cell growth and clonogenicity. However, misfolding of refp17 is necessary to expose a masked functional epitope, interacting with the protease-activated receptor 1 (PAR-1), endowed with B cell clonogenicity. Indeed, it is worth noting that changes in the secondary structure can strongly impact the function of a protein. Here, we performed computational studies to show that the gain of function of vp17s is linked to dramatic conformational changes due to structural modification in the secondary-structure elements and in the rearrangement of the hydrogen bond (H-bond) network. In particular, all clonogenic vp17s showed the disengagement of two critical residues, namely Trp16 and Tyr29, from their hydrophobic core. Biological data showed that the mutation of Trp16 and Tyr29 to Ala in the refp17 backbone, alone or in combination, resulted in a protein endowed with B cell clonogenic activity. These data show the pivotal role of the hydrophobic component in maintaining refp17 stability and identify a novel potential therapeutic target to counteract vp17-driven lymphomagenesis in HIV-1+ patients.


Assuntos
Linfócitos B , Antígenos HIV , HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Humanos , Antígenos HIV/genética , Antígenos HIV/metabolismo , Antígenos HIV/química , HIV-1/genética , HIV-1/fisiologia , Linfócitos B/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Infecções por HIV/virologia , Proliferação de Células , Dobramento de Proteína
8.
Monash Bioeth Rev ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078602

RESUMO

The COVID-19 pandemic has highlighted the importance of biosafety in the biomedical sciences. While it is often assumed that biosafety is a purely technical matter that has little to do with philosophy or the humanities, biosafety raises important ethical issues that have not been adequately examined in the scientific or bioethics literature. This article reviews some pivotal events in the history of biosafety and biosecurity and explores three different biosafety topics that generate significant ethical concerns, i.e., risk assessment, risk management, and risk distribution. The article also discusses the role of democratic governance in the oversight of biosafety and offers some suggestions for incorporating bioethics into biosafety practice, education, and policy.

9.
EBioMedicine ; 106: 105236, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996765

RESUMO

BACKGROUND: Variants in GABRB2, encoding the ß2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS: Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS: Electrophysiological assessments of α1ß2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION: The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING: This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.

10.
Muscle Nerve ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044557

RESUMO

INTRODUCTION/AIMS: Oculopharyngodistal myopathy type 4 (OPDM4) arises from a CGG repeat expansion in the 5' UTR of the RILPL1 gene. Reported cases of OPDM4 have been limited. The aim of this study was to investigate the clinical and myopathological characteristics of OPDM4 patients with advanced disease. METHODS: We assessed a total of 8 affected and 12 unaffected individuals in an OPDM4 family with autosomal dominant inheritance. Muscle biopsy tissue from the proband underwent histological, enzyme histochemical, and immunohistochemical stains, and electron microscopy analysis. Whole exome sequencing and repeat primer PCR (RP-PCR) were conducted to investigate underlying variants. RESULTS: OPDM4 patients displayed a progressive disease course. Most experienced lower limb weakness and diminished walking ability in their 20s and 30s, followed by ptosis, ophthalmoplegia, swallowing difficulties, and dysarthria in their 30s to 50s, By their 50s to 70s, they became non-ambulatory. Muscle magnetic resonance imaging (MRI) of the proband in advanced disease revealed severe fatty infiltration of pelvic girdle and lower limb muscles. Biopsied muscle tissue exhibited advanced changes typified by adipose connective tissue replacement and the presence of multiple eosinophilic and p62-positive intranuclear inclusions. Immunopositivity for the intranuclear inclusions was observed with anti-glycine antibody and laboratory-made polyA-R1 antibody. RP-PCR unveiled an abnormal CGG repeat expansion in the 5' UTR of the RILPL1 gene. DISCUSSION: The clinical and radiological features in this family broaden the phenotypic spectrum of OPDM4. The presence of intranuclear inclusions in the proliferative adipose connective tissues of muscle biopsy specimens holds diagnostic significance for OPDM4 in advanced disease.

11.
Epilepsy Behav ; 158: 109930, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964184

RESUMO

BACKGROUND: Variants in sodium channel genes (SCN) are strongly associated with epilepsy phenotypes. Our aim in this study to evaluate the genotype and phenotype correlation of patients with SCN variants in our tertiary care center. METHODS: In this retrospective study, patients with SCN variants and epilepsy who were followed up at our clinic between 2018 and 2022 were evaluated. Our study discussed the demographics of the patients, the seizure types, the age of seizure onset, the SCN variants, the domains and the functions of the variants, the magnetic resonance imaging findings, the motor, cognitive, and psychiatric comorbidities, and the response to anti-seizure medication. Genetic testing was conducted using a next-generation sequencing gene panel (epilepsy panel) or a whole-exome sequencing. For evaluating variant function, we used a prediction tool (https://funnc.shinyapps.io/shinyappweb/ site). To assess protein domains, we used the PER viewer (http://per.broadinstitute.org/). RESULTS: Twenty-three patients with SCN variants and epilepsy have been identified. Sixteen patients had variants in the SCN1A, six patients had variants in the SCN2A, and one patient had a variant in the SCN3A. Two novel SCN1A variants and two novel SCN2A variants were identified. The analysis revealed 14/23 missense, 6/23 nonsense, 2/23 frameshift, and 1/23 splice site variants in the SCN. There are seven variants predicted to be gain-of-function and 13 predicted to be loss-of-function. Among 23 patients; 11 had Dravet Syndrome, 6 had early infantile developmental and epileptic encephalopathy, three had genetic epilepsy with febrile seizures plus spectrum disorder, one had self-limited familial neonatal-infantile epilepsy, one had self-limited infantile epilepsy and one had infantile childhood development epileptic encephalopathy. CONCLUSION: Our cohort consists of mainly SCN1 variants, most of them were predicted to be loss of function. Dravet syndrome was the most common phenotype. The prediction tool used in our study demonstrated overall compatibility with clinical findings. Due to the diverse clinical manifestations of variant functions, it may assist in guiding medication selection and predicting outcomes. We believe that such a tool will help the clinician in both prognosis prediction and solving therapeutic challenges in this group where refractory seizures are common.

12.
Trends Cell Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960851

RESUMO

Mutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage. Consistently, the behavior and properties of p53 mutants are altered by the context. This article aims to provide a balanced summary of the evolving evidence regarding the contribution of p53 mutants in the biology of cancer while contemplating alternative frameworks to decipher the complexity of p53 mutants within their physiological contexts.

13.
J Law Med ; 31(2): 353-369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38963250

RESUMO

AI technologies can pose a major national security concern. AI programs could be used to develop chemical and biological agents which circumvent existing protective measures or medical treatments, or to design pathogens with capabilities they do not naturally possess (gain-of-function research). Although Australia has a strong legislative framework relating to research into genetically modified organisms, the framework requires the interaction of more than 10 different government departments, universities and funding agencies. Further, there are few guidelines about the responsible use of AI in biological research where existing laws and policies do not apply to research that is conducted "virtually", even where that research may have national security implications. This article explores these under-scrutinised concepts in Australia's biological security frameworks.


Assuntos
Inteligência Artificial , Medidas de Segurança , Biologia Sintética , Biologia Sintética/legislação & jurisprudência , Austrália , Humanos , Medidas de Segurança/legislação & jurisprudência , Inteligência Artificial/legislação & jurisprudência
14.
Front Immunol ; 15: 1352789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966639

RESUMO

Introduction: Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods: Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results: The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion: The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.


Assuntos
Pneumonia , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2X7 , Sepse , Choque Séptico , Humanos , Receptores Purinérgicos P2X7/genética , Masculino , Feminino , Choque Séptico/genética , Choque Séptico/mortalidade , Choque Séptico/imunologia , Pessoa de Meia-Idade , Pneumonia/genética , Pneumonia/mortalidade , Idoso , Sepse/genética , Sepse/mortalidade , Predisposição Genética para Doença , Trifosfato de Adenosina/metabolismo , Adulto , Idoso de 80 Anos ou mais
15.
Bone ; 187: 117172, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38909879

RESUMO

Gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) can cause high-bone-mass (HBM) phenotype, with 19 identified mutations so far. The A242T mutation in LRP5 has been found in 9 families, making it one of the most prevalent mutations. However, the correlation between the A242T mutation and HBM phenotype remains unverified in animal models. This study aimed to investigate the bone properties in a new transgenic mouse model carrying the LRP5 A241T missense mutation, equivalent to A242T in humans. Heterozygous Lrp5A241T mice were generated using CRISPR/Cas9 genome editing. Body weight increased with age from 4 to 16 weeks, higher in males than females, with no difference between Lrp5A241T mice and wild-type control. Micro-CT showed slightly longer femur and notably elevated trabecular bone mass of the femur and fifth lumbar spine with higher bone mineral density, bone volume fraction, and trabecular thickness in Lrp5A241T mice compared to wild-type mice. Additionally, increased cortical bone thickness and volume of the femur shaft and skull were observed in Lrp5A241T mice. Three-point bending tests of the tibia demonstrated enhanced bone strength properties in Lrp5A241T mice. Histomorphometry confirmed that the A241T mutation increased bone formation without affecting osteoblast number and reduced resorption activities in vivo. In vitro experiments indicated that the LRP5 A241T mutation enhanced osteogenic capacity of osteoblasts with upregulation of the Wnt signaling pathway, with no significant impact on the resorptive activity of osteoclasts. In summary, mice carrying the LRP5 A241T mutation displayed high bone mass and quality due to enhanced bone formation and reduced bone resorption in vivo, potentially mediated by the augmented osteogenic potential of osteoblasts. Continued investigation into the regulatory mechanisms of its bone metabolism and homeostasis may contribute to the advancement of novel therapeutic strategies for bone disorders.


Assuntos
Densidade Óssea , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos Transgênicos , Fenótipo , Animais , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Feminino , Masculino , Densidade Óssea/genética , Osteoblastos/metabolismo , Mutação/genética , Camundongos , Osso e Ossos/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Microtomografia por Raio-X , Tamanho do Órgão , Osteogênese/genética , Peso Corporal/genética , Fêmur/diagnóstico por imagem , Fêmur/patologia , Fêmur/metabolismo , Osteoclastos/metabolismo
16.
Brain ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875478

RESUMO

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

17.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895286

RESUMO

Rod photoreceptor formation in the postnatal mouse is a widely used model system for studying mammalian photoreceptor development. This experimental paradigm provides opportunities for both gain and loss-of-function studies which can be accomplished through in vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors. Here we report that the use of a photoreceptor cis-regulatory element from the Crx gene in combination with broadly active promoter elements can increase the targeting of developing rod photoreceptors in the mouse. This can lead to greater reporter expression, as well as enhanced misexpression and loss-of-function phenotypes in these cells. This study also highlights the importance of identifying and testing relevant cis-regulatory elements when planning cell subtype specific experiments. The use of the specific hybrid elements in this study will provide a more efficacious gene delivery system to study mammalian photoreceptor formation.

18.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915605

RESUMO

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that is activated by phosphorylation events downstream of FcR, B-cell and T-cell receptors, integrins, and C-type lectin receptors. When the tandem Src homology 2 (SH2) domains of SYK bind to phosphorylated immunoreceptor tyrosine-based activation motifs (pITAMs) contained within these immunoreceptors, or when SYK is phosphorylated in interdomain regions A and B, SYK is activated. SYK gain-of-function (GoF) variants were previously identified in six patients that had higher levels of phosphorylated SYK and phosphorylated downstream proteins JNK and ERK. Furthermore, the increased SYK activation resulted in the clinical manifestation of immune dysregulation, organ inflammation, and a predisposition for lymphoma. The knowledge that the SYK GoF variants have enhanced activity was leveraged to develop a SYK NanoBRET cellular target engagement assay in intact live cells with constructs for the SYK GoF variants. Herein, we developed a potent SYK-targeted NanoBRET tracer using a SYK donated chemical probe, MRL-SYKi, that enabled a NanoBRET cellular target engagement assay for SYK GoF variants, SYK(S550Y), SYK(S550F), and SYK(P342T). We determined that ATP-competitive SYK inhibitors bind potently to these SYK variants in intact live cells. Additionally, we demonstrated that MRL-SYKi can effectively reduce the catalytic activity of SYK variants, and the phosphorylation levels of SYK(S550Y) in an epithelial cell line (SW480) stably expressing SYK(S550Y).

19.
Cell Oncol (Dordr) ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888850

RESUMO

PURPOSE: Uterine serous carcinoma (USC) is generally associated with poor prognosis due to a high recurrence rate and frequent treatment resistance; hence, there is a need for improved therapeutic strategies. Molecular analysis of USC identified several molecular markers, useful to improve current treatments or identify new druggable targets. PPP2R1A, encoding the Aα subunit of the tumor suppressive Ser/Thr phosphatase PP2A, is mutated in up to 40% of USCs. Here, we investigated the effect of the p.R183W PPP2R1A hotspot variant on treatment response to the nucleoside analogue clofarabine. METHODS AND RESULTS: USC cells stably expressing p.R183W Aα showed increased resistance to clofarabine treatment in vitro and, corroborated by decreased clofarabine-induced apoptosis, G1 phase arrest, DNA-damage (γH2AX) and activation of ATM and Chk1/2 kinases. Phenotypic rescue by pharmacologic PP2A inhibition or dicer-substrate siRNA (dsiRNA)-mediated B56δ subunit knockdown supported a gain-of-function mechanism of Aα p.R183W, promoting dephosphorylation and inactivation of deoxycytidine kinase (dCK), the cellular enzyme responsible for the conversion of clofarabine into its bioactive form. Therapeutic assessment of related nucleoside analogues (gemcitabine, cladribine) revealed similar effects, but in a cell line-dependent manner. Expression of two other PPP2R1A USC mutants (p.P179R or p.S256F) did not affect clofarabine response in our cell models, arguing for mutant-specific effects on treatment outcome as well. CONCLUSIONS: While our results call for PPP2R1A mutant and context-dependent effects upon clofarabine/nucleoside analogue monotherapy, combining clofarabine with a pharmacologic PP2A inhibitor proved synergistically in all tested conditions, highlighting a new generally applicable strategy to improve treatment outcome in USC.

20.
Biol Chem ; 405(7-8): 531-544, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38695485

RESUMO

Naturally occurring gain-of-function (GOF) mutants have been identified in patients for a variety of cytokine receptors. Although this constitutive activation of cytokine receptors is strongly associated with malignant disorders, ligand-independent receptor activation is also a useful tool in synthetic biology e.g. to improve adoptive cellular therapies with genetically modified T-cells. Balanced Interleukin (IL-)7 signaling via a heterodimer of IL-7 receptor (IL-7Rα) and the common γ-chain (γc) controls T- and B-cell development and expansion, whereas uncontrolled IL-7 signaling can drive acute lymphoid leukemia (ALL) development. The ALL-driver mutation PPCL in the transmembrane domain of IL-7Rα is a mutational insertion of the four amino acids proline-proline-cysteine-leucine and leads to ligand-independent receptor dimerization and constitutive activation. We showed here in the cytokine-dependent pre-B-cell line Ba/F3 that the PPCL-insertion in a synthetic version of the IL-7Rα induced γc-independent STAT5 and ERK phosphorylation and also proliferation of the cells and that booster-stimulation by arteficial ligands additionally generated non-canonical STAT3 phosphorylation via the synthetic IL-7Rα-PPCL-receptors. Transfer of the IL-7Rα transmembrane domain with the PPCL insertion into natural and synthetic cytokine receptor chains of the IL-6, IL-12 and Interferon families also resulted in constitutive receptor signaling. In conclusion, our data suggested that the insertion of the mutated PPCL IL-7Rα transmembrane domain is an universal approach to generate ligand-independent, constitutively active cytokine receptors.


Assuntos
Cisteína , Transdução de Sinais , Cisteína/metabolismo , Cisteína/química , Humanos , Ligantes , Animais , Camundongos , Receptores de Citocinas/metabolismo , Receptores de Citocinas/química , Receptores de Citocinas/genética , Dimerização , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA