Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.543
Filtrar
1.
Animals (Basel) ; 14(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39409836

RESUMO

Training is instrumental in identifying and selecting cattle that exhibit greater cooperation with experimental conditions required in flow respirometry assays, like restraint and the use of a valved facial mask. In our study, a tailored training protocol for Nellore cattle facilitated their participation in flow respirometry assays with a valved facial mask. Over 127 days, 30 entire Nellore males, weighing 450 ± 25 kg and averaging 32 ± 2 months, underwent training from May to September 2022. The regimen involved gradually altering the animals' environment and providing positive reinforcement, divided into three phases. Physiological and behavioral responses to containment routines and facial mask use were meticulously assessed. Principal component analyses revealed dissimilarity patterns among the animals. Animals classified as less reactive showed increased acceptance of handling, reduced reactions to weighing, and greater tolerance of the facial mask. In the final phase, the least reactive animals tolerated wearing a valved mask for extended periods without notable changes in respiratory rate. The training protocol effectively identified and selected Nellore cattle displaying enhanced cooperation with restraint and mask use during flow respirometry assays, without apparent behavioral or physiological alterations.

2.
Plants (Basel) ; 13(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39409575

RESUMO

Water deficiency and potential drought periods could be important ecological factors influencing cultivation areas and productivity once different crops are established. The principal supply of vegetable oil for oil crops is oil palm, and new challenges are emerging in the face of climatic changes. This study investigated the photosynthetic performance of 12 genotypes of Elaeis exposed to drought stress under controlled conditions. The assay included genotypes of Elaeis guineensis, Elaeis oleifera, and the interspecific O×G hybrid (E. oleifera × E. guineensis). The principal results showed that the E. guineensis genotype was the most efficient at achieving photosynthesis under drought stress conditions, followed by the hybrid and E. oleifera genotypes. The physiological parameters showed good prospects for vegetal breeding with different O×G hybrids, mainly because of their ability to maintain the equilibrium between CO2 assimilation and stomatal aperture. We validated 11 genes associated with drought tolerance, but no differences were detected. These results indicate that no allelic variants were represented in the RNA during sampling for the validated genotypes. In conclusion, this study helps to define genotypes that can be used as parental lines for oil palm improvement. The gas exchange data showed that drought stress tolerance could define guidelines to incorporate the available genetic resources in breeding programs across the early selection in nursery stages.

3.
Plants (Basel) ; 13(19)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39409635

RESUMO

Water scarcity leads to significant ecological challenges for global farming production. Sustainable agriculture depends on developing strategies to overcome the impacts of drought on important crops, including soybean. In this present study, seven promising soybean genotypes were evaluated for their drought tolerance potential by exposing them to water deficit conditions. The control group was maintained at 100% field capacity (FC), while the drought-treated group was maintained at 50% FC on a volume/weight basis. This treatment was applied at the second trifoliate leaf stage and continued until maturity. Our results demonstrated that water shortage exerted negative impacts on soybean phenotypic traits, physiological and biochemical mechanisms, and yield output in comparison with normal conditions. Our results showed that genotype G00001 exhibited the highest leaf area plant-1 (483.70 cm2), photosynthetic attributes like stomatal conductance (gs) (0.15 mol H2O m-2 s-1) and photosynthetic rate (Pn) (13.73 µmol CO2 m-2 s-1), and xylem exudation rate (0.25 g h-1) under drought conditions. The G00001 genotype showed greater leaf greenness by preserving photosynthetic pigments (total chlorophylls (Chls) and carotenoids; 4.23 and 7.34 mg g-1 FW, respectively) in response to drought conditions. Soybean plants accumulated high levels of stress indicators like proline and malondialdehyde when subjected to drought stress. However, genotype G00001 displayed lower levels of proline (4.49 µg g-1 FW) and malondialdehyde (3.70 µmol g-1 FW), indicating that this genotype suffered from less oxidative stress induced by drought stress compared to the other investigated soybean genotypes. Eventually, the G00001 genotype had a greater yield in terms of seeds pod-1 (SP) (1.90) and 100-seed weight (HSW) (14.60 g) under drought conditions. On the other hand, BD2333 exhibited the largest decrease in plant height (37.10%), pod number plant-1 (85.90%), SP (56.20%), HSW (54.20%), gs (90.50%), Pn (71.00%), transpiration rate (59.40%), relative water content (34.40%), Chl a (79.50%), total Chls (72.70%), and carotenoids (56.70%), along with the maximum increase in water saturation deficit (290.40%) and malondialdehyde content (280.30%) under drought compared to control conditions, indicating its higher sensitivity to drought stress. Our findings suggest that G00001 is a promising candidate to consider for field trials and further evaluation of its molecular signature may help breeding other elite cultivars to develop drought-tolerant, high-yielding soybean varieties.

4.
Plants (Basel) ; 13(19)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39409701

RESUMO

Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L'Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off.

5.
Plant Physiol Biochem ; 216: 109173, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39362125

RESUMO

Sulfur is an essential nutrient for various physiological processes, including protein synthesis and enzyme activation. We aimed to evaluate how S-benzyl-L-cysteine (SBC), an inhibitor of the sulfur assimilation pathway, affects maize plants' growth, photosynthesis, and leaf proteomic profile. Thus, maize plants were grown for 14 days in vermiculite supplemented with SBC. Photosynthesis was assessed using light and CO2 response curves and chlorophyll a fluorescence. Leaf proteome analysis was conducted to evaluate photosynthetic protein biosynthesis, and ROS content was quantified to assess oxidative stress. Applying SBC resulted in a significant decrease in the growth of maize plants. The gas exchange analysis revealed that maize plants exhibited a diminished rate of CO2 assimilation attributable to both stomatal and non-stomatal limitations. Furthermore, SBC suppressed the activity of important elements involved in the photosynthetic electron transport chain (including photosystems I and II, cytochrome b6f, and ATP synthase) and enzymes responsible for the Calvin cycle, some of which have sulfur-containing prosthetic groups. Consequently, the diminished electron flow rate resulted in a substantial increase in the levels of ROS within the leaves. Our research highlights the crucial role of SBC in disrupting maize photosynthesis by limiting L-cysteine and assimilated sulfur availability, which are essential for the synthesis of protein and prosthetic groups and photosynthetic processes, emphasizing the potential of OAS-TL as a new herbicide site of action.

6.
Plant Sci ; 350: 112295, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39423916

RESUMO

Photosynthesis is an essential process in plants that synthesizes sugars used for growth and development, highlighting the importance of establishing robust methods to monitor photosynthetic activity. Infrared gas analysis (IRGA) can be used to track photosynthetic rates by measuring plant CO2 assimilation and release. Although much progress has been made in the development of IRGA technologies, challenges remain when using this technique on small herbaceous plants such as Arabidopsis thaliana. The use of whole plant chambers can overcome the difficulties associated with applying bulky leaf clamps to small delicate leaves. However, respiration from the roots and from soil-based microorganisms may skew these gas exchange measurements. Here, we present a simple method to efficiently perform IRGA on A. thaliana plants using a whole plant chamber that removes the confounding effects of respiration from roots and soil-based microorganisms from the measurements. We show that this method can be used to detect subtle changes in photosynthetic rates measured at different times of day, under different growth conditions, and between wild-type and plants with deficiencies in the photosynthetic machinery. Furthermore, we show that this method can be used to detect changes in photosynthetic rates even at very young developmental stages such as 10 d-old seedlings. This method contributes to the array of techniques currently used to perform IRGA on A. thaliana and can allow for the monitoring of photosynthetic rates of whole plants from young ages.

7.
Plant J ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39410670

RESUMO

Understanding the relationship between wind speed and gas exchange in plants is a longstanding challenge. Our aim was to investigate the impact of wind speed on maximum rates of gas exchange and the kinetics of stomatal responses. We conducted experiments in different angiosperm and fern species using an infrared gas analyzer equipped with a controlled leaf fan, enabling precise control of the boundary layer conductance. We first showed that the chamber was adequately mixed even at extremely low wind speed (<0.005 m s-1) and evaluated the link between fan speed, wind speed, and boundary layer conductance. We observed that higher wind speeds led to increased gas exchange of both water vapor and CO2, primarily due to the increase in boundary layer conductance. This increase in transpiration subsequently reduced epidermal pressure, leading to stomatal opening. We documented that stomatal opening in response to light was 2.5 times faster at a wind speed of 2 m s-1 compared to minimal wind speed in Vicia faba, while epidermal peels in a buffer with no transpiration exhibited a similar opening rate. The increase in stomatal conductance under high wind was also observed in four angiosperm species under field conditions, but it was not observed in Boston fern (Nephrolepis exaltata), which lacks epidermal mechanical advantage. Our findings highlight the significant impact of boundary layer conductance on determining gas exchange rates and the kinetics of gas exchange responses to environmental changes.

8.
Plant Physiol Biochem ; 217: 109200, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39454536

RESUMO

Heavy metal contamination increases plant susceptibility to both biotic and abiotic stresses. However, the comprehensive impact of heavy metal pollution on plant hydraulics, which is crucial for plant productivity, and the interaction between heavy metal stress and environmental factors on plant health are not yet fully understood. In this study, we investigated the effects of cadmium exposure on plant-water relations and hydraulics of Solanum lycopersicum L., cultivar Piccadilly. Particular attention was given to leaf hydraulic conductance (KL) in response to cadmium pollution and dehydration. Cadmium exposure exhibited negligible impacts on tomato productivity but resulted in significant differences in pressure-volume derived traits. Leaves and roots of Cd-treated plants showed reduced wall stiffness compared to control samples. However, Cd-treated leaves had a less negative turgor loss point (Ψtlp), whereas Cd-treated roots exhibited more negative Ψtlp values due to lower osmotic potential at full turgor compared to control samples. Leaves and root cells of Cd-treated plants showed higher values of saturated water content compared to control plants, along with a distinct mineral profile between the two experimental groups. Despite similar leaf water potential thresholds for 50% and 80% loss of KL in control and cadmium-treated leaves, plants grown in cadmium-polluted soil showed higher leaf cell damages even under well watered conditions. This, in turn, affected the plant ability to recover from drought upon rehydration by compromising cell rehydration ability. Overall, the present findings suggest that under conditions of low water availability, cadmium pollution increases the risk of leaf hydraulic failure.

9.
Plant Physiol Biochem ; 217: 109221, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39447242

RESUMO

The ability of plants to recover after stressful events is crucial for resuming growth and development and is a key trait when studying stress tolerance. However, there is a lack of information on the physiological responses and the time required to restore homeostasis after the stress experience. This study aimed to (i) enhance understanding of soybean photosynthesis performance during saline waterlogging and (ii) investigate the effects of this combined stress during the reoxygenation and recovery period. Soybean plants (cultivar PELBR10-6049 RR) were subjected to waterlogging, NaCl, or hypoxia + NaCl for 3 and 6 days. Afterward, plants were drained and allowed to recover for an additional two (short-term) and seven days (long-term). Compared to plants exposed to single stress, the combined hypoxia + NaCl treatment resulted in a lower net CO2 assimilation rate, ФPSII, and levels of photosynthetic pigments during the waterlogging period. Furthermore, hypoxia + NaCl increased foliar electrolyte leakage during waterlogging. In response to short-term reoxygenation, these negative effects were amplified, while prolonged reoxygenation resulted in a slight increase in biomass accumulation. In conclusion, full recovery was not achieved under any condition during the reoxygenation periods tested. Notably, the brief reoxygenation phase imposed greater stress than the initial stress conditions for plants facing combined stress. Although extended recovery increased biomass accumulation, it remained lower in plants previously subjected to saline waterlogging.

10.
Plants (Basel) ; 13(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39458799

RESUMO

Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic and aquaponic systems, has emerged as one of these solutions by minimizing land use, reducing water consumption, and enabling year-round crop production in urban areas. This study aimed at assessing the yield, ecophysiological performance, and nutritional content of Lactuca sativa L. and Cichorium endivia L. var. crispum grown in hydroponic and aquaponic floating raft systems, with Oreochromis niloticus L. integrated into the aquaponic system. Both species exhibited higher fresh biomass and canopy/root ratios in hydroponics compared to aquaponics. Additionally, hydroponics increased the leaf number in curly endive by 18%. Ecophysiological parameters, such as the leaf net photosynthesis rate, actual yield of PSII, and linear electron transport rate, were also higher in hydroponics for both species. However, the nutritional profiles varied between the two cultivation systems and between the two species. Given that standard fish feed often lacks sufficient potassium levels for optimal plant growth, potassium supplementation could be a viable strategy to enhance plant development in aquaponic systems. In conclusion, although aquaponic systems may demonstrate lower productivity compared to hydroponics, they offer a more sustainable and potentially healthier product with fewer harmful compounds due to the reduced use of synthetic fertilizers, pesticides, and the absence of chemical residue accumulation. However, careful system management and monitoring are crucial to minimize potential contaminants.

11.
Plants (Basel) ; 13(20)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39458859

RESUMO

Salt stress results in physiological changes that inhibit plant growth and development. Ca-complex sources are used as a potential salt stress attenuator. This study was carried out with the aim of verifying the effects of Ca-complex sources in reducing the effects of saline water stress on the physiological aspects of sour passion fruit seedlings. The experiment was carried out in a randomized block design with a 2 × 2 × 3 factorial scheme, consisting of two cultivars of sour passion fruit (BRS GA1 and BRS SC1), two levels of water salinity (electrical conductivity of 0.5 and 4.0 dS m-1) and three sources of Ca-complex (without, organic acids and amino acids). The traits measured at 60 days after sowing were gas exchange, chlorophyll indices, chlorophyll fluorescence, electrolyte leakage, and relative water content in the leaf limb. Under moderate water salinity, the application of Ca-complex in amino acids promoted increases of 49.84% and 43.71%, respectively, in the efficiency of water use and carboxylation. The application of complex sources increased the stability of cell membranes, reducing electrolyte leakage, providing higher relative water content in seedlings irrigated with moderately saline water. From the results, we conclude that Ca-complex sources have potential as modulators of moderately saline water stress in sour passion fruit seedlings.

12.
Plants (Basel) ; 13(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339525

RESUMO

The disposal of coal fly ash (CFA) generated from coal-fired power stations has serious impact on the ecosystem, by converting large pieces of land to barren ash dams with the potential to contaminate groundwater, surface water, air and soil. The aim of this study was to clarify the potential of phytoremediation using Helichrysum splendidum (Thunb.) Less. in areas polluted by CFA through conduction of pot trial experiments for 14 weeks. Plants of the same age were cultivated in CFA to assess their growth, photosynthetic rate and tolerance towards metal toxicity. This study revealed that the CFA was moderately polluted with heavy metals, and a lower photosynthetic rate was recorded for the CFA plants in comparison to the controls (plants grown in soil). Although the CO2 assimilation rate was lower for the CFA plants, increased growth was recorded for all the plants tested. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of trace elements in samples and parameters including translocation factor (TF) and bioconcentration factor (BCF) were used to evaluate the phytoremediation potential of H. splendidum (Thunb.) Less. The results revealed that higher concentrations of Cd, Co, Cr, Cu, Mn and Pb were accumulated in the roots, while As, Ni and Zn were found in the shoots. Elements including As, Cr and Zn reported TF values above 1, indicating the plants' phytoextraction potential. The BCF values for As, Cu and Zn were 1.22, 1.19 and 1.03, indicating effectiveness in the phytostabilization processes. A removal rate efficiency ranging from 18.0 to 56.7% was recorded confirming that, H. splendidum (Thunb.) Less. can be employed for restoration of CFA dams.

13.
Sci Rep ; 14(1): 22546, 2024 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343801

RESUMO

The production of açaí seed waste from the commercial and extractive exploitation of the Euterpe oleraceae palm tree is a serious problem that contributes to environmental contamination and production of greenhouse gases, a fact that suggests the need for an environmentally correct destination for this waste produced on a large scale. To this end, this study was conducted to evaluate the potential of acaí seed biochar (BCA) in mitigating the toxic effects of copper in Brazilian mahogany plants, analyzing biometrics and gas exchange. The experimental design was in randomized blocks, with five blocks, in a 4 × 3 factorial scheme, corresponding to the control (without Cu) and three concentration of Cu (200, 400, and 600 mg Cu kg-1) and three levels of BCA (0%, 5% and 10%) proportional to the amount of soil in the pots, totaling sixty experimental units. The use of 5% BCA in soils contaminated with up to 200 mg kg-1 Cu promoted biometric increase (height, diameter, number of leaves), maintaining gas exchange (photosynthesis, stomatal conductance, transpiration, internal carbon and internal/external carbon), and consequently, maintaining water use efficiency in plants under abiotic stress, resulting in plant growth. The findings of this study allow us to indicate the use of biochar in remediating and improving the growth of plants grown in copper-contaminated soils. The production of biochar from açaí seeds is an ecologically sustainable alternative, because it reduces its accumulation on public roads and contributes to reducing soil pollution. In the context of public policies, biochar production could be a source of income in the context of the bioeconomy and circular economy practiced in the Amazon, because it is produced in large quantities.


Assuntos
Carvão Vegetal , Cobre , Poluentes do Solo , Poluentes do Solo/toxicidade , Solo/química , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
14.
BJA Open ; 11: 100302, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39224447

RESUMO

Background: Introducing variability in tidal volume, ventilatory frequency, or both is beneficial during mechanical ventilation in acute respiratory distress syndrome (ARDS). We investigated whether applying cycle-by-cycle variability in the positive end-expiratory pressure (PEEP) exerts beneficial effect on lung function in a model of ARDS. Methods: Rabbits with lung injury were randomly allocated to receive mechanical ventilation for 6 h by applying a pressure-controlled mode with constant PEEP of 7 cm H2O (PC group: n=6) or variable PEEP (VEEP) with a coefficient of variation of 21.4%, range 4-10 cm H2O (PC-VEEP group; n=6). Lung oxygenation index (Pao2/FiO2) after 6 h of ventilation (H6) was the primary outcome and respiratory mechanics, lung volume, intrapulmonary shunt, and lung inflammatory markers were secondary outcomes. Results: After lung injury, both groups presented moderate-to-severe ARDS (Pao2/FiO2 <27 kPa). The Pao2/FiO2 was significantly higher in the PC-VEEP group than in the PC group at H6 (12.3 [sd 3.5] vs 19.2 [7.2] kPa, P=0.013) and a lower arterial partial pressure of CO2 at 1-3 h (P<0.02). The ventilation-induced increases in airway resistance and tissue elastance were prevented by PC-VEEP. There was no evidence for a difference in minute volume, driving pressure, end-tidal CO2, lung volumes, intrapulmonary shunt fraction, and cytokines between the ventilation modes. Conclusions: Prolonged mechanical ventilation with cycle-by-cycle VEEP prevents deterioration in gas exchange and respiratory mechanics in a model of ARDS, suggesting the benefit of this novel ventilation strategy to optimise gas exchange without increasing driving pressure and lung overdistension.

16.
New Phytol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238150

RESUMO

Analyses of leaf gas exchange rely on an Ohmic analogy that arrays single stomatal, internal air space, and mesophyll conductances in series. Such models underlie inferences of mesophyll conductance and the relative humidity of leaf airspaces, reported to fall as low as 80%. An unresolved question is whether such series models are biased with respect to real leaves, whose internal air spaces are chambered at various scales by vasculature. To test whether unsaturation could emerge from modeling artifacts, we compared series model estimates with true parameter values for a chambered leaf with varying distributions and magnitudes of leaf surface conductance ('patchiness'). Distributions of surface conductance can create large biases in gas exchange calculations. Both apparent unsaturation and internal CO2 gradient inversion can be produced by the evolution of broader distributions of stomatal apertures consistent with a decrease in surface conductance, as might occur under increasing vapor pressure deficit. In gas exchange experiments, the behaviors of derived quantities defined by simple series models are highly sensitive to the true partitioning of flux and stomatal apertures across leaf surfaces. New methods are needed to disentangle model artifacts from real biological responses.

17.
Respir Physiol Neurobiol ; 331: 104339, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39237069

RESUMO

BACKGROUND: Invasive ventilation of infants born before 24 weeks of gestation is critical for survival and long-term respiratory outcomes, but currently there is a lack of evidence to guide respiratory management. We aimed to compare respiratory mechanics and gas exchange in ventilated extremely preterm infants born before and after 24 weeks of gestation. METHODS: Secondary analysis of two prospective observational cohort studies, comparing respiratory mechanics and indices of gas exchange in ventilated infants born at 22-24 weeks of gestation (N=14) compared to infants born at 25-27 weeks (N=37). The ventilation/perfusion ratio (VA/Q), intrapulmonary shunt, alveolar dead space (VDalv) and adjusted alveolar surface area (SA) were measured in infants born at the Neonatal Unit of King's College Hospital NHS Foundation Trust, London, UK. RESULTS: Compared to infants of 25-27 weeks, infants of 22-24 weeks had higher median (IQR) intrapulmonary shunt [18 (4 - 29) % vs 8 (2 - 12) %, p=0.044] and higher VDalv [0.9 (0.6 - 1.4) vs 0.6 (0.5 - 0.7) ml/kg, p=0.036], but did not differ in VA/Q. Compared to infants of 25-27 weeks, the infants of 22-24 weeks had a lower adjusted SA [509 (322- 687) vs 706 (564 - 800) cm2, p=0.044]. The infants in the two groups did not differ in any of the indices of respiratory mechanics. CONCLUSION: Ventilated infants born before 24 completed weeks of gestation exhibit abnormal gas exchange, with higher alveolar dead space and intrapulmonary shunt and a decreased alveolar surface area compared to extreme preterms born after 24 weeks of gestation.

18.
Plants (Basel) ; 13(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273857

RESUMO

Atmospheric elevated CO2 concentration (e[CO2]) decreases plant nitrogen (N) concentration while increasing water use efficiency (WUE), fertigation increases crop nutrition and WUE in crop; yet the interactive effects of e[CO2] coupled with two N-fertigation levels during deficit irrigation on plant gas exchange, root morphology and WUE remain largely elusive. The objective of this study was to explore the physiological and growth responses of ambient [CO2] (a[CO2], 400 ppm) and e[CO2] (800 ppm) tomato plant exposed to two N-fertigation regimes: (1) full irrigation during N-fertigation (FIN); (2) deficit irrigation during N-fertigation (DIN) under two N fertilizer levels (reduced N (N1, 0.5 g pot-1) and adequate N (N2, 1.0 g pot-1). The results indicated that e[CO2] associated with DIN regime induced the lower N2 plant water use (7.28 L plant-1), maintained leaf water potential (-5.07 MPa) and hydraulic conductivity (0.49 mol m-2 s-1 MPa-1), greater tomato growth in terms of leaf area (7152.75 cm2), specific leaf area (223.61 cm2 g-1), stem and total dry matter (19.54 g and 55.48 g). Specific root length and specific root surface area were increased under N1 fertilization, and root tissue density was promoted in both e[CO2] and DIN environments. Moreover, a smaller and denser leaf stomata (4.96 µm2 and 5.37 mm-2) of N1 plant was obtained at e[CO2] integrated with DIN strategy. Meanwhile, this combination would simultaneously reduce stomatal conductance (0.13 mol m-2 s-1) and transpiration rate (1.91 mmol m-2 s-1), enhance leaf ABA concentration (133.05 ng g-1 FW), contributing to an improvement in WUE from stomatal to whole-plant scale under each N level, especially for applying N1 fertilization (125.95 µmol mol-1, 8.41 µmol mmol-1 and 7.15 g L-1). These findings provide valuable information to optimize water and nitrogen fertilizer management and improve plant water use efficiency, responding to the potential resource-limited and CO2-enriched scenario.

19.
Insects ; 15(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39336661

RESUMO

Shrubs are a significant component of urban vegetation found in parks, but they experience various influences from biotic and abiotic agents, among which aphids play an important role. In this work, the effects of aphid colonisation on three shrub species in urban environments were examined. Fourteen parameters were analysed, describing the photosynthetic pigment content and gas exchange to carbon, nitrogen, and hydrogen partitions. While no significant effect of colonisation was found on photosynthetic pigment parameters, the effect was significant on gas exchange parameters. The strongest effect of aphid colonisation achieved was on nitrogen partition and the C/N ratio, parameters that could be suggested for further similar studies. All parameters were classified into two groups according to their principal component analysis, suggesting a correlation between nitrogen and carbon content, the C/N ratio, measured gas exchange parameters, and chlorophyll a content. The ratio between net photosynthesis and dark respiration (A/K) was classified in the second group, suggesting that this parameter provides additional information on the effect of aphid colonisation and deserves special attention in further studies. There were differences in the effect of aphid colonisation on the physiology of the examined shrub species, especially in cases where a decrease in the C/N ratio was achieved in Spirea trilobata and Cydonia japonica, while an increase in the same parameter was recorded in Hybiscus syriacus.

20.
Front Plant Sci ; 15: 1406542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228830

RESUMO

Soil salinization is one of the major factors limiting agricultural production. Utilizing beneficial microorganisms like Piriformospora indica (P. indica) to enhance plant tolerance to abiotic stresses is a highly effective method, but the influence of P. indica on the growth of soybean in natural saline-alkaline soil remains unclear. Therefore, we investigated the effects of non-inoculation, P. indica inoculation, and fertilization on the growth, antioxidant defense, osmotic adjustment, and photosynthetic gas exchange parameters of soybean under two different levels of saline-alkaline stress in non-sterilized natural saline-alkaline soil. The study found that: 1) P. indica inoculation significantly promoted soybean growth, increasing plant height, root length, and biomass. Under mildly saline-alkaline stress, the increases were 11.5%, 16.0%, and 14.8%, respectively, compared to non-inoculated treatment. Under higher stress, P. indica inoculation achieved the same level of biomass increase as fertilization, while fertilization only significantly improved stem diameter. 2) Under saline-alkaline stress, P. indica inoculation significantly increased antioxidant enzyme activities and reduced malondialdehyde (MDA) content. Under mildly stress, MDA content was reduced by 47.1% and 43.3% compared to non-inoculated and fertilized treatments, respectively. Under moderate stress, the MDA content in the inoculated group was reduced by 29.9% and 36.6% compared to non-inoculated and fertilized treatments, respectively. Fertilization only had a positive effect on peroxidase (POD) activity. 3) P. indica inoculation induced plants to produce more osmotic adjustment substances. Under mildly stress, proline, soluble sugars, and soluble proteins were increased by 345.7%, 104.4%, and 6.9%, respectively, compared to non-inoculated treatment. Under higher stress, the increases were 75.4%, 179.7%, and 12.6%, respectively. Fertilization had no significant positive effect on proline content. 4) With increasing stress, soybean photosynthetic capacity in the P. indica-inoculated treatment was significantly higher than in the non-inoculated treatment, with net photosynthetic rate increased by 14.8% and 37.0% under different stress levels. These results indicate that P. indica can enhance soybean's adaptive ability to saline-alkaline stress by regulating ROS scavenging capacity, osmotic adjustment substance content, and photosynthetic capacity, thereby promoting plant growth. This suggests that P. indica has great potential in improving soybean productivity in natural saline-alkaline soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA