RESUMO
Anemone baicalensis Turcz., a botanical species with a rich historical background in traditional medicine for detoxification and insecticidal applications, possesses a vast, yet largely unexplored, therapeutic potential. This study primarily focused on conducting a qualitative phytochemical analysis of the plant, determining the active ingredient content and antioxidant activity of various solvent extracts. The qualitative phytochemical analysis revealed the presence of 12 different types of phytochemicals within the plant. Utilizing ultraviolet-visible spectrophotometry, we identified 11 active ingredients in 4 solvent extracts. Notably, the methanol extract was found to contain high concentrations of total carbohydrate, total monoterpenoid, total phenolic, total tannin, and total triterpenoid. In the antioxidant experiment, the methanol extract demonstrated superior scavenging abilities against 1,1-diphenyl-2-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) diammonium salt, superoxide anion radical, and hydrogen peroxide, outperforming other extracts in chelation experiments aimed at reducing iron and metal ions. Consequently, the methanol extract was selected for further investigation. Subsequent ultrahigh-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry analysis revealed that the methanol extract contained 39 compounds, primarily phenolic compounds and triterpenoid saponins. Three stability assessments confirmed the extract's stability under high temperatures, varying pH levels, and simulated gastrointestinal processes. Additionally, oil stability testing demonstrated its antioxidant capacity in extra virgin olive oil and cold-pressed sunflower seed oil media. An oral acute toxicity experiment conducted on mice not only confirmed the absence of acute toxicity in the methanol extract but also provided a dose reference for subsequent gastric protection experiments. Notably, the methanol extract exhibited significant gastroprotective effects against ethanol-induced gastric lesions in rats, as evidenced by histopathological and biochemical analyses. Specifically, the extract reduced levels of malondialdehyde, alanine aminotransferase, and aspartate aminotransferase while increasing glutathione, nitric oxide, and catalase, indicating its gastroprotective mechanism. These findings suggest that the methanol extract from the aerial part of Anemone baicalensis could be a promising therapeutic agent for conditions associated with oxidative imbalances. They underscore the plant's potential therapeutic benefits and offer valuable insights into its antioxidant properties, thereby broadening our understanding of its medicinal potential.
Assuntos
Antioxidantes , Compostos Fitoquímicos , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Ratos , Componentes Aéreos da Planta/química , Masculino , Camundongos , Fenóis/química , Fenóis/farmacologia , Fenóis/análiseRESUMO
BACKGROUND/AIMS: Abexol is a mixture of primary aliphatic alcohols purified from beeswax (Apis mellifera), that produces anti-inflammatory, antioxidant and gastroprotective effects, as well as it is safe and well tolerated. To investigate and compare the efficacy and safety of Abexol (suspension versus tablets) in patients with gastrointestinal symptoms. METHODS: Monocentric study, open-label, randomized design, with two parallel groups receiving Abexol tablets (150 mg/d) or Abexol suspension (75 mg/d) for 8 weeks. Primary efficacy variable (significant improvement in the total score of Gastrointestinal Symptom Rating Scale [GSRS]). Significant reduction in the intensity of the gastrointestinal-symptoms and the reduction in the consumption of antacids are considered secondary efficacy variable. Short form-36 (SF-36) quality of life questiongenonaire was evaluated as collateral variable. Data were analyzed as per intention to treat. RESULTS: A significantly decrease in the overall score of the survey was observed with respect to the baseline level (p < 0.001) of 81.4% in the Abexol suspension group and 77.9% in the Abexol tablets group. At the end of the trial, most gastrointestinal- symptoms disappeared or reduced significantly. The frequency of consumption of neutralizing antacids was low. The significantly improvement in the perception of the state of health obtained in the Abexol is in correspondence with the improvement achieved in some of the components evaluate in the SF-36 questionnaire. Both treatments were safe and well tolerated. CONCLUSION: Abexol suspension showed efficacy and safety similar to Abexol tablets in patients with gastrointestinal symptoms, but using half the dose.
Assuntos
Antiácidos , Qualidade de Vida , Animais , Humanos , Método Duplo-Cego , Comprimidos , Resultado do TratamentoRESUMO
Nine undescribed geranylgeranylated derivatives (chinensens A-G), including malic acid derivative (A) and phenolic derivatives (B-E), as well as two pairs of enantiomers, [(R), (S)]-chinensens F and [(R), (S)]-chinensens G, were isolated from the roots of Rhus chinensis Mill. Their structures were elucidated by UV, IR, HRESIMS, 1D and 2D NMR spectra, as well as optical rotations. The 95% EtOH extract (95% EXT, 500 mg/kg, p. o.) of the roots of Rhus chinensis and the 95% EtOH fraction (95% FRA, 500 mg/kg, p. o.) from the microporous resin column significantly alleviated indomethacin-induced or water immersion-restraint stress-induced damage in rat gastric mucosa with inhibitory rates from 53% to 89%. The racemic mixture (chinensen G) and its enantiomers [(R), (S)]-chinensens G showed weak activities against H+,K+-ATPase (20%-24%) at a concentration of 0.1 mM, respectively.
Assuntos
Compostos Fitoquímicos , Rhus , Animais , Ratos , Rhus/química , Raízes de Plantas/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Mucosa Gástrica/efeitos dos fármacos , Fenóis/química , Fenóis/isolamento & purificaçãoRESUMO
Ganoderma lucidum is known as a medicine food homology that can ameliorate gastrointestinal diseases. To evaluate the gastroprotective effects on different Ganoderma lucidum polysaccharides (GLPs), GLP was separated into three parts with different molecular weights using 100 kDa, 10 kDa, and 1 kDa membranes. The mitigation effects of different GLPs on ethanol-induced acute gastric injury were observed in rats. After pretreatment with different GLPs, especially GLP above 10 kDa, the symptoms of gastric mucosal congestion and bleeding were improved; serum myeloperoxidase, inflammatory factor, and histamine were decreased; and antioxidant activity and defense factors (NO and EGF) were increased. Results showed that GLP with different molecular weights had a dose-dependent effect in alleviating alcohol-induced gastric injury. The underlying mechanism might be related to regulating anti-oxidation, promoting the release of related defense factors, reducing inflammatory factors, and reducing the level of histamine in serum. The current work indicated that GLPs above 10 kDa could be applied as natural resources for producing new functional foods to prevent gastric injury induced by ethanol.
Assuntos
Reishi , Animais , Etanol/efeitos adversos , Histamina , Peso Molecular , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , RatosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Processing, also called Paozhi in Chinese, is an ancient Chinese pharmaceutic processing technique developed along with the Chinese herbal medicines (CHMs). The understanding of the mechanism of Paozhi has been investigated for several decades. Aucklandiae Radix (CAR) and its roasted processed products are all used in indigestion as a kind of CHMs. Processed Aucklandiae Radix (PAR) had a stronger effect to protect gastric mucosa than CAR, while the main compounds in CAR were reduced sharply after being processed. The underlying mechanism of this phenomenon is still unclear. AIM OF THE STUDY: This study was aimed to evaluate whether PAR have a stronger gastroprotective effect than CAR and the underlying mechanisms of such circumstance. MATERIALS AND METHODS: Ultra-fast liquid chromatography coupled with quadrupole time of flight mass spectrometry (UFLC-QTOF-MS/MS) coupled with multivariate statistical analyses was employed to explore chemical compounds which had a relatively stable content in PAR. Based on the compounds selected as the research object, network pharmacology was applied to visualize the relationships between the selected components and the gastroprotective-related targets from disease database, at the same time the possible intervention path of CAR/PAR which might be responsible for the effect of CAR/PAR on gastritis-induced rats was also built. Then, the key proteins were detected by western blotting to verify and compare the pharmacological effects of CAR/PAR. RESULTS: Through UFLC-QTOF-MS/MS and orthogonal partial least squares discriminant analysis (OPLS-DA), sixteen compounds stable in PAR were discovered, of which saussureamine C and saussureamine B were estimated as the core compounds to exert gastroprotective in PAR predicted by network pharmacology analysis. Under the guide of KEGG pathway enrichment analysis, PI3K/AKT, p38 MAPK (Mitogen-activated protein kinase) and nuclear factor-kappa B (NF-κB) signaling pathways were forecasted as the possible healing mechanisms of CAR/PAR, and that result was verified by the experiments in vivo. PAR performed a stronger ability to reduce the level of p38 MAPK and NF-κB p65 than CAR, which may partially explain the different ability of CAR/PAR against gastric mucosa damage. CONCLUSION: This study clarified that although Paozhi entailed a sharp decrease on the main compounds of CAR, there were some compounds which were not sensitive to high temperature and preserved in PAR and had a relative higher content in PAR than in CAR. PAR has stronger influence on MAPKs/NF-κB signaling pathway than CAR, which may reveal that the stronger gastroprotective effect of PAR perhaps rely on the constitutions with a higher relative abundance after Paozhi. The present research combined UFLC-QTOF-MS/MS and network pharmacology deeply investigated the impact of the roasted processing on the chemical constitutions and gastroprotective effect of CAR and offered reference for the clinical application of CAR/PAR.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Gastrite/prevenção & controle , Saussurea/química , Animais , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Culinária , Medicamentos de Ervas Chinesas/química , Mucosa Gástrica/patologia , Masculino , Raízes de Plantas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem , TemperaturaRESUMO
Peptic ulcer disease is a common gastrointestinal tract disorder that affects up to 20% of the population of the world. Treatment of peptic ulcer remains challenging due to the limited effectiveness and severe side effects of the currently available drugs. Hence, natural compounds, owing to their medicinal, ecological, and other safe properties, are becoming popular potential candidates in preventing and treating peptic ulcers. Flavonoids, the most abundant polyphenols in plants, exhibit gastroprotective effects against peptic ulcer both in vivo and in vitro. In this review, we summarized the anti-ulcer functions and mechanisms, and also the bioavailability, efficacy, and safety, of flavonoid monomers in the gastrointestinal tract. Flavonoids exerted cytoprotective and rehabilitative effects by not only strengthening defense factors, such as mucus and prostaglandins, but also protecting against potentially harmful factors via their antioxidative, anti-inflammatory, and antibacterial activities. Although controlled clinical studies are limited at present, flavonoids have shown a promising preventable and therapeutic potential in peptic ulcers.
Assuntos
Anti-Inflamatórios/uso terapêutico , Flavonoides/uso terapêutico , Úlcera Péptica/tratamento farmacológico , Antioxidantes/uso terapêutico , Flavonoides/efeitos adversos , HumanosRESUMO
This study was designed to observe the possible protective effects of a triple-fermented barley (Hordeum vulgare L.) extract (FBe) obtained by saccharification and using Saccharomyces cerevisiae and Weissella cibaria in alleviating gastric damage induced by a hydrochloric acid (HCl) and ethanol (EtOH) mixture in mice. After oral administration of FBe (300, 200, and 100 mg/kg) followed by 1 hr before and after the single treatment of HCl/EtOH (H/E) mixture, the hemorrhagic lesion scores, histopathology of the stomach, gastric nitrate/nitrite content, lipid peroxidation, and antioxidant defense systems including catalase and superoxide dismutase activities were observed. Following a single oral treatment of H/E-induced gastric damages as measured by hemorrhagic gross lesions and histopathological gastric, ulcerative lesions were significantly and dose-dependently (p < 0.01 or p < 0.05) inhibited in mice, when all three different doses of FBe were administered as compared to those in H/E control mice. In particular, FBe also increased gastric nitrate/nitrite content and strengthened the antioxidant defense, with a decrease in the level of gastric lipid peroxidation, but increased the activities of CAT and SOD. Moreover, the effects of FBe are comparable to that of ranitidine, a reference drug. The obtained results suggest that this fermented barley extract prevented mice from H/E-induced gastric mucosal damages through the suppression of inflammatory responses and oxidative stress-responsive free radicals. Thus, FBe can be useful to treat patients suffering from gastric mucosal disorders as a potent food supplement, and thereby, it would increase the necessity of application in the food industry.
RESUMO
Heliotropium indicum of the family Boraginaceae is used locally in Nigeria to treat ailments such as ulcer and fever. In this study, ulceration of the gastric mucosa in Wistar rats was induced via the oral administration of 80mg/kg/bodyweight of Indomethacin. Histological analyses of the stomach body wall in the rats of Groups 2 and 4 (which received 100mg/kg/bodyweight of extract before oral administration of 80mg/kg/bodyweight Indomethacin and 80mg/kg/bodyweight Indomethacin only respectively) showed erosion of the mucus-secreting cells, gastric pit, upper and middle parts of gastric glands and some of the parietal cells. Histological observations of the stomach body wall in rats of Group 5 (which received 200mg/kg/bodyweight of extract before oral administration of 80mg/kg/bodyweight of Indomethacin) showed erosion of the mucus-secreting cells, gastric pit and the upper most part of the gastric gland. Histological observations of the stomach body wall in rats of Groups 1, 6 and 3 (which received 50mg/kg/bodyweight of Ranitidine and 400mg/kg/bodyweight of extract before oral administration of 80mg/kg/bodyweight Indomethacin; and only 80mg/kg/bodyweight of Normal Saline respectively) showed normal morphological appearance of the different components of the mucosa layer. Thus, the aqueous extracts of the dried leaves of Heliotropium indicum have dose dependent histo-gastroprotective effects.