Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Life Sci Space Res (Amst) ; 42: 117-132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067983

RESUMO

Microgravity, as a unique hazardous factor encountered in space, can induce a series of harmful effects on living organisms. The impact of microgravity on the pivotal functional gene modules stemming from gene enrichment analysis via the regulation of miRNAs is not fully illustrated. To explore the microgravity-induced alterations in critical functional gene modules via the regulation of miRNAs, in the present study, we proposed a novel bioinformatics algorithm for the integrated analysis of miRNAome and transcriptome from short-term space-flown C. elegans. The samples of C. elegans were exposed to two space conditions, namely spaceflight (SF) and spaceflight control (SC) onboard the International Space Station for 4 days. Additionally, the samples of ground control (GC) were included for comparative analysis. Using the present algorithm, we constructed regulatory networks of functional gene modules annotated from differentially expressed genes (DEGs) and their associated regulatory differentially expressed miRNAs (DEmiRNAs). The results showed that functional gene modules of molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathway were facilitated by 25 down-regulated DEmiRNAs (e.g., cel-miR-792, cel-miR-65, cel-miR-70, cel-lsy-6, cel-miR-796, etc.) in the SC vs. GC groups, whereas these modules were inhibited by 13 up-regulated DEmiRNAs (e.g., cel-miR-74, cel-miR-229, cel-miR-70, cel-miR-249, cel-miR-85, etc.) in the SF vs. GC groups. These findings indicated that microgravity could significantly alter gene expression patterns and their associated functional gene modules in short-term space-flown C. elegans. Additionally, we identified 34 miRNAs as post-transcriptional regulators that modulated these functional gene modules under microgravity conditions. Through the experimental verification, our results demonstrated that microgravity could induce the down-regulation of five critical functional gene modules (i.e., molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathways) via the regulation of miRNAs in short-term space-flown C. elegans.


Assuntos
Caenorhabditis elegans , Redes Reguladoras de Genes , MicroRNAs , Voo Espacial , Transcriptoma , Ausência de Peso , Animais , Caenorhabditis elegans/genética , MicroRNAs/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
2.
Brain Sci ; 14(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38671993

RESUMO

Brain hypoxia is associated with a wide range of physiological and clinical conditions. Although oxygen is an essential constituent of maintaining brain functions, our understanding of how specific brain cell types globally respond and adapt to decreasing oxygen conditions is incomplete. In this study, we exposed mouse primary neurons, astrocytes, and microglia to normoxia and two hypoxic conditions and obtained genome-wide transcriptional profiles of the treated cells. Analysis of differentially expressed genes under conditions of reduced oxygen revealed a canonical hypoxic response shared among different brain cell types. In addition, we observed a higher sensitivity of neurons to oxygen decline, and dissected cell type-specific biological processes affected by hypoxia. Importantly, this study establishes novel gene modules associated with brain cells responding to oxygen deprivation and reveals a state of profound stress incurred by hypoxia.

3.
Genes (Basel) ; 14(12)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137044

RESUMO

Fungal pathogens can have devastating effects on global crop production, leading to annual economic losses ranging from 10% to 23%. In light of climate change-related challenges, researchers anticipate an increase in fungal infections as a result of shifting environmental conditions. However, plants have developed intricate molecular mechanisms for effective defense against fungal attacks. Understanding these mechanisms is essential to the development of new strategies for protecting crops from multiple fungi threats. Public omics databases provide valuable resources for research on plant-pathogen interactions; however, integrating data from different studies can be challenging due to experimental variation. In this study, we aimed to identify the core genes that defend against the pathogenic fungi Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis thaliana. Using a custom framework to control batch effects and construct Gene Co-expression Networks in publicly available RNA-seq dataset from infected A. thaliana plants, we successfully identified a gene module that was responsive to both pathogens. We also performed gene annotation to reveal the roles of previously unknown protein-coding genes in plant defenses against fungal infections. This research demonstrates the potential of publicly available RNA-seq data for identifying the core genes involved in defending against multiple fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Micoses , Arabidopsis/genética , Arabidopsis/microbiologia , RNA-Seq , Proteínas de Arabidopsis/genética , Plantas/genética
4.
Dev Cell ; 58(24): 3028-3047.e12, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37995681

RESUMO

During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 h post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and identify unexpected long-term cycling populations. Focused clustering and transcriptional trajectory analyses of non-skeletal muscle and endoderm identified transcriptional profiles and candidate transcriptional regulators of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and recently discovered best4+ cells. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.


Assuntos
Desenvolvimento Embrionário , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Desenvolvimento Embrionário/genética , Análise de Célula Única
5.
Trop Anim Health Prod ; 55(5): 349, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796357

RESUMO

CONTEXT: Somatic cell count (SCC) is used as an indicator of udder health. The log transformation of SCC is called somatic cell score (SCS). AIM: Several QTL and genes have been identified that are associated with SCS. This study aimed to identify the most important genes associated with SCS. METHODS: This study compiled 168 genes that were reported to be significantly linked to SCS. Pathway analysis and network analysis were used to identify hub genes. KEY RESULTS: Pathway analysis of these genes identified 73 gene ontology (GO) terms associated with SCS. These GO terms are associated with molecular function, biological processes, and cellular components, and the identified pathways are directly or indirectly linked with the immune system. In this study, a gene network was constructed, and from this network, the 17 hub genes (CD4, CXCL8, TLR4, STAT1, TLR2, CXCL9, CCR2, IGF1, LEP, SPP1, GH1, GHR, VWF, TNFSF11, IL10RA, NOD2, and PDGFRB) associated to SCS were identified. The subnetwork analysis yielded 10 clusters, with cluster 1 containing all identified hub genes (except for the VWF gene). CONCLUSION: Most hub genes and pathways identified in our study were mainly involved in inflammatory and cytokine responses. IMPLICATIONS: Result obtained in current study provides knowledge of the genetic basis and biological mechanisms controlling SCS. Therefore, the identified hub genes may be regarded as the main gene for the genomic selection of mastitis resistance.


Assuntos
Citocinas , Fator de von Willebrand , Animais , Feminino , Bovinos/genética , Contagem de Células/veterinária , Ontologia Genética , Genômica
6.
BMC Genomics ; 24(1): 418, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488493

RESUMO

Sepsis is a life-threatening condition characterized by a harmful host response to infection with organ dysfunction. Annually about 20 million people are dead owing to sepsis and its mortality rates is as high as 20%. However, no studies have been carried out to investigate sepsis from the system biology point of view, as previous research predominantly focused on individual genes without considering their interactions and associations. Here, we conducted a comprehensive exploration of genome-wide expression alterations in both mRNAs and long non-coding RNAs (lncRNAs) in sepsis, using six microarray datasets. Co-expression networks were conducted to identify mRNA and lncRNA modules, respectively. Comparing these sepsis modules with normal modules, we observed a homogeneous expression pattern within the mRNA/lncRNA members, with the majority of them displaying consistent expression direction. Moreover, we identified consistent modules across diverse datasets, consisting of 20 common mRNA members and two lncRNAs, namely CHRM3-AS2 and PRKCQ-AS1, which are potential regulators of sepsis. Our results reveal that the up-regulated common mRNAs are mainly involved in the processes of neutrophil mediated immunity, while the down-regulated mRNAs and lncRNAs are significantly overrepresented in T-cell mediated immunity functions. This study sheds light on the co-expression patterns of mRNAs and lncRNAs in sepsis, providing a novel perspective and insight into the sepsis transcriptome, which may facilitate the exploration of candidate therapeutic targets and molecular biomarkers for sepsis.


Assuntos
RNA Longo não Codificante , Sepse , Humanos , Biologia , Imunidade Celular , RNA Mensageiro , Receptor Muscarínico M3
7.
J Comput Biol ; 30(8): 877-888, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37471241

RESUMO

Spatial transcriptome (ST) technology provides both the spatial location and transcriptional profile of spots, as well as tissue images. ST data can be utilized to construct gene regulatory networks, which can help identify gene modules that facilitate the understanding of biological processes such as cell communication. Correlation measurement is the core basis for constructing a gene regulatory network. However, due to the high noise and sparsity in ST data, common correlation measurement methods such as the Pearson correlation coefficient (PCC) and Spearman correlation coefficient (SPCC) are not suitable. In this work, a new gene correlation measurement method called STgcor is proposed. STgcor defines vertexes as spots in a two-dimensional coordinate plane consisting of axes X and Y from the gene pair (X and Y). The joint probability density of Gaussian distribution of the gene pair (X and Y) is calculated to identify and eliminate outliers. To overcome sparsity, the degree, trend, and location of the distribution of vertexes are used to measure the correlation between gene pairs (X, Y). To validate the performance of the STgcor method, it is compared with the PCC and SPCC in a weighted coexpression network analysis method using two ST datasets of breast cancer and prostate cancer. The gene modules identified by these methods are then compared and analyzed. The results show that the STgcor method detects some special gene modules and cancer-related pathways that cannot be detected by the other two methods.


Assuntos
Neoplasias da Mama , Transcriptoma , Masculino , Humanos , Transcriptoma/genética , Redes Reguladoras de Genes , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica/métodos
8.
Biotechnol Adv ; 65: 108142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36977440

RESUMO

Bacterial therapy has become a key strategy against intestinal infectious diseases in recent years. Moreover, regulating the gut microbiota through traditional fecal microbiota transplantation and supplementation of probiotics faces controllability, efficacy, and safety challenges. The infiltration and emergence of synthetic biology and microbiome provide an operational and safe treatment platform for live bacterial biotherapies. Synthetic bacterial therapy can artificially manipulate bacteria to produce and deliver therapeutic drug molecules. This method has the advantages of solid controllability, low toxicity, strong therapeutic effects, and easy operation. As an essential tool for dynamic regulation in synthetic biology, quorum sensing (QS) has been widely used for designing complex genetic circuits to control the behavior of bacterial populations and achieve predefined goals. Therefore, QS-based synthetic bacterial therapy might become a new direction for the treatment of diseases. The pre-programmed QS genetic circuit can achieve a controllable production of therapeutic drugs on particular ecological niches by sensing specific signals released from the digestive system in pathological conditions, thereby realizing the integration of diagnosis and treatment. Based on this as well as the modular idea of synthetic biology, QS-based synthetic bacterial therapies are divided into an environmental signal sensing module (senses gut disease physiological signals), a therapeutic molecule producing module (plays a therapeutic role against diseases), and a population behavior regulating module (QS system). This review article summarized the structure and function of these three modules and discussed the rational design of QS gene circuits as a novel intervention strategy for intestinal diseases. Moreover, the application prospects of QS-based synthetic bacterial therapy were summarized. Finally, the challenges faced by these methods were analyzed to make the targeted recommendations for developing a successful therapeutic strategy for intestinal diseases.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Humanos , Percepção de Quorum/genética , Bactérias , Microbioma Gastrointestinal/genética , Redes Reguladoras de Genes
9.
BMC Genomics ; 24(1): 76, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797662

RESUMO

Since genes do not function individually, the gene module is considered an important tool for interpreting gene expression profiles. In order to consider both functional similarity and expression similarity in module identification, GMIGAGO, a functional Gene Module Identification algorithm based on Genetic Algorithm and Gene Ontology, was proposed in this work. GMIGAGO is an overlapping gene module identification algorithm, which mainly includes two stages: In the first stage (initial identification of gene modules), Improved Partitioning Around Medoids Based on Genetic Algorithm (PAM-GA) is used for the initial clustering on gene expression profiling, and traditional gene co-expression modules can be obtained. Only similarity of expression levels is considered at this stage. In the second stage (optimization of functional similarity within gene modules), Genetic Algorithm for Functional Similarity Optimization (FSO-GA) is used to optimize gene modules based on gene ontology, and functional similarity within gene modules can be improved. Without loss of generality, we compared GMIGAGO with state-of-the-art gene module identification methods on six gene expression datasets, and GMIGAGO identified the gene modules with the highest functional similarity (much higher than state-of-the-art algorithms). GMIGAGO was applied in BRCA, THCA, HNSC, COVID-19, Stem, and Radiation datasets, and it identified some interesting modules which performed important biological functions. The hub genes in these modules could be used as potential targets for diseases or radiation protection. In summary, GMIGAGO has excellent performance in mining molecular mechanisms, and it can also identify potential biomarkers for individual precision therapy.


Assuntos
COVID-19 , Redes Reguladoras de Genes , Humanos , Ontologia Genética , Algoritmos , Perfilação da Expressão Gênica/métodos , Transcriptoma
10.
Front Genet ; 14: 1082032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760999

RESUMO

Multi-omics data integration has emerged as a promising approach to identify patient subgroups. However, in terms of grouping genes (or gene products) into co-expression modules, data integration methods suffer from two main drawbacks. First, most existing methods only consider genes or samples measured in all different datasets. Second, known molecular interactions (e.g., transcriptional regulatory interactions, protein-protein interactions and biological pathways) cannot be utilized to assist in module detection. Herein, we present a novel data integration framework, Correlation-based Local Approximation of Membership (CLAM), which provides two methodological innovations to address these limitations: 1) constructing a trans-omics neighborhood matrix by integrating multi-omics datasets and known molecular interactions, and 2) using a local approximation procedure to define gene modules from the matrix. Applying Correlation-based Local Approximation of Membership to human colorectal cancer (CRC) and mouse B-cell differentiation multi-omics data obtained from The Cancer Genome Atlas (TCGA), Clinical Proteomics Tumor Analysis Consortium (CPTAC), Gene Expression Omnibus (GEO) and ProteomeXchange database, we demonstrated its superior ability to recover biologically relevant modules and gene ontology (GO) terms. Further investigation of the colorectal cancer modules revealed numerous transcription factors and KEGG pathways that played crucial roles in colorectal cancer progression. Module-based survival analysis constructed four survival-related networks in which pairwise gene correlations were significantly correlated with colorectal cancer patient survival. Overall, the series of evaluations demonstrated the great potential of Correlation-based Local Approximation of Membership for identifying modular biomarkers for complex diseases. We implemented Correlation-based Local Approximation of Membership as a user-friendly application available at https://github.com/free1234hm/CLAM.

11.
J Genet Genomics ; 50(5): 305-317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36693565

RESUMO

Transcription factors (TFs) regulate cellular activities by controlling gene expression, but a predictive model describing how TFs quantitatively modulate human transcriptomes is lacking. We construct a universal human gene expression predictor named EXPLICIT-Human and utilize it to decode transcriptional regulation. Using the expression of 1613 TFs, the predictor reconstitutes highly accurate transcriptomes for samples derived from a wide range of tissues and conditions. The broad applicability of the predictor indicates that it recapitulates the quantitative relationships between TFs and target genes ubiquitous across tissues. Significant interacting TF-target gene pairs are extracted from the predictor and enable downstream inference of TF regulators for diverse pathways involved in development, immunity, metabolism, and stress response. A detailed analysis of the hematopoiesis process reveals an atlas of key TFs regulating the development of different hematopoietic cell lineages, and a portion of these TFs are conserved between humans and mice. The results demonstrate that our method is capable of delineating the TFs responsible for fate determination. Compared to other existing tools, EXPLICIT-Human shows a better performance in recovering the correct TF regulators.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Gênica
12.
Cell Syst ; 14(1): 41-57.e8, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36630956

RESUMO

Our knowledge of the cell-type-specific mechanisms of insulin resistance remains limited. To dissect the cell-type-specific molecular signatures of insulin resistance, we performed a multiscale gene network analysis of adipose and muscle tissues in African and European ancestry populations. In adipose tissues, a comparative analysis revealed ethnically conserved cell-type signatures and two adipocyte subtype-enriched modules with opposite insulin sensitivity responses. The modules enriched for adipose stem and progenitor cells as well as immune cells showed negative correlations with insulin sensitivity. In muscle tissues, the modules enriched for stem cells and fibro-adipogenic progenitors responded to insulin sensitivity oppositely. The adipocyte and muscle fiber-enriched modules shared cellular-respiration-related genes but had tissue-specific rearrangements of gene regulations in response to insulin sensitivity. Integration of the gene co-expression and causal networks further pinpointed key drivers of insulin resistance. Together, this study revealed the cell-type-specific transcriptomic networks and signaling maps underlying insulin resistance in major glucose-responsive tissues. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/genética , Multiômica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica
13.
Front Genet ; 13: 971845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338962

RESUMO

Ovarian cancer is the second most common gynecologic cancer and remains the leading cause of death of all gynecologic oncologic disease. Therefore, understanding the molecular mechanisms underlying the disease, and the identification of effective and predictive biomarkers are invaluable for the development of diagnostic and treatment strategies. In the present study, a differential co-expression network analysis was performed via meta-analysis of three transcriptome datasets of serous ovarian adenocarcinoma to identify novel candidate biomarker signatures, i.e. genes and miRNAs. We identified 439 common differentially expressed genes (DEGs), and reconstructed differential co-expression networks using common DEGs and considering two conditions, i.e. healthy ovarian surface epithelia samples and serous ovarian adenocarcinoma epithelia samples. The modular analyses of the constructed networks indicated a co-expressed gene module consisting of 17 genes. A total of 11 biomarker candidates were determined through receiver operating characteristic (ROC) curves of gene expression of module genes, and miRNAs targeting these genes were identified. As a result, six genes (CDT1, CNIH4, CRLS1, LIMCH1, POC1A, and SNX13), and two miRNAs (mir-147a, and mir-103a-3p) were suggested as novel candidate prognostic biomarkers for ovarian cancer. Further experimental and clinical validation of the proposed biomarkers could help future development of potential diagnostic and therapeutic innovations in ovarian cancer.

14.
Front Immunol ; 13: 997851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389817

RESUMO

The immune system is highly networked and complex, which is continuously changing as encountering old and new pathogens. However, reductionism-based researches do not give a systematic understanding of the molecular mechanism of the immune response and viral pathogenesis. Here, we present HUMPPI-2022, a high-quality human protein-protein interaction (PPI) network, containing > 11,000 protein-coding genes with > 78,000 interactions. The network topology and functional characteristics analyses of the immune-related genes (IRGs) reveal that IRGs are mostly located in the center of the network and link genes of diverse biological processes, which may reflect the gene pleiotropy phenomenon. Moreover, the virus-human interactions reveal that pan-viral targets are mostly hubs, located in the center of the network and enriched in fundamental biological processes, but not for coronavirus. Finally, gene age effect was analyzed from the view of the host network for IRGs and virally-targeted genes (VTGs) during evolution, with IRGs gradually became hubs and integrated into host network through bridging functionally differentiated modules. Briefly, HUMPPI-2022 serves as a valuable resource for gaining a better understanding of the composition and evolution of human immune system, as well as the pathogenesis of viruses.


Assuntos
Vírus , Humanos , Vírus/genética , Mapas de Interação de Proteínas , Sistema Imunitário
15.
Biomolecules ; 12(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883420

RESUMO

Previous studies have shown that the RNA genomes of some plant viruses encode two related genetic modules required for virus movement over the host body, containing two or three genes and named the binary movement block (BMB) and triple gene block (TGB), respectively. In this paper, we predict a novel putative-related movement gene module, called the tetra-cistron movement block (TCMB), in the virus-like transcriptome assemblies of the moss Dicranum scoparium and the Antarctic flowering plant Colobanthus quitensis. These TCMBs are encoded by smaller RNA components of putative two-component viruses related to plant benyviruses. Similar to the RNA2 of benyviruses, TCMB-containing RNAs have the 5'-terminal coat protein gene and include the RNA helicase gene which is followed by two small overlapping cistrons encoding hydrophobic proteins with a distant sequence similarity to the TGB2 and TGB3 proteins. Unlike TGB, TCMB also includes a fourth 5'-terminal gene preceding the helicase gene and coding for a protein showing a similarity to the double-stranded RNA-binding proteins of the DSRM AtDRB-like superfamily. Additionally, based on phylogenetic analysis, we suggest the involvement of replicative beny-like helicases in the evolution of the BMB and TCMB movement genetic modules.


Assuntos
Biologia Computacional , Vírus de Plantas , Redes Reguladoras de Genes , Filogenia , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Front Genet ; 13: 865371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646047

RESUMO

Human brain-related disorders, such as autism spectrum disorder (ASD), are often characterized by cell heterogeneity, as the cell atlas of brains consists of diverse cell types. There are commonality and specificity in gene expression among different cell types of brains; hence, there may also be commonality and specificity in dysregulated gene expression affected by ASD among brain cells. Moreover, as genes interact together, it is important to identify shared and cell-type-specific ASD-related gene modules for studying the cell heterogeneity of ASD. To this end, we propose integrative regularized non-negative matrix factorization (iRNMF) by imposing a new regularization based on integrative non-negative matrix factorization. Using iRNMF, we analyze gene expression data of multiple cell types of the human brain to obtain shared and cell-type-specific gene modules. Based on ASD risk genes, we identify shared and cell-type-specific ASD-associated gene modules. By analyzing these gene modules, we study the commonality and specificity among different cell types in dysregulated gene expression affected by ASD. The shared ASD-associated gene modules are mostly relevant to the functioning of synapses, while in different cell types, different kinds of gene functions may be specifically dysregulated in ASD, such as inhibitory extracellular ligand-gated ion channel activity in GABAergic interneurons and excitatory postsynaptic potential and ionotropic glutamate receptor signaling pathway in glutamatergic neurons. Our results provide new insights into the molecular mechanism and pathogenesis of ASD. The identification of shared and cell-type-specific ASD-related gene modules can facilitate the development of more targeted biomarkers and treatments for ASD.

17.
Front Genet ; 13: 855420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419027

RESUMO

Understanding molecular features that facilitate aggressive phenotypes in glioblastoma multiforme (GBM) remains a major clinical challenge. Accurate diagnosis of GBM subtypes, namely classical, proneural, and mesenchymal, and identification of specific molecular features are crucial for clinicians for systematic treatment. We develop a biologically interpretable and highly efficient deep learning framework based on a convolutional neural network for subtype identification. The classifiers were generated from high-throughput data of different molecular levels, i.e., transcriptome and methylome. Furthermore, an integrated subsystem of transcriptome and methylome data was also used to build the biologically relevant model. Our results show that deep learning model outperforms the traditional machine learning algorithms. Furthermore, to evaluate the biological and clinical applicability of the classification, we performed weighted gene correlation network analysis, gene set enrichment, and survival analysis of the feature genes. We identified the genotype-phenotype relationship of GBM subtypes and the subtype-specific predictive biomarkers for potential diagnosis and treatment.

18.
Front Pharmacol ; 13: 1089217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726786

RESUMO

Identification of the biological targets of a compound is of paramount importance for the exploration of the mechanism of action of drugs and for the development of novel drugs. A concept of the Connectivity Map (CMap) was previously proposed to connect genes, drugs, and disease states based on the common gene-expression signatures. For a new query compound, the CMap-based method can infer its potential targets by searching similar drugs with known targets (reference drugs) and measuring the similarities into their specific transcriptional responses between the query compound and those reference drugs. However, the available methods are often inefficient due to the requirement of the reference drugs as a medium to link the query agent and targets. Here, we developed a general procedure to extract target-induced consensus gene modules from the transcriptional profiles induced by the treatment of perturbagens of a target. A specific transcriptional gene module pair (GMP) was automatically identified for each target and could be used as a direct target signature. Based on the GMPs, we built the target network and identified some target gene clusters with similar biological mechanisms. Moreover, a gene module pair-based target identification (GMPTI) approach was proposed to predict novel compound-target interactions. Using this method, we have discovered novel inhibitors for three PI3K pathway proteins PI3Kα/ß/δ, including PU-H71, alvespimycin, reversine, astemizole, raloxifene HCl, and tamoxifen.

19.
Bioinformation ; 18(4): 438-441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36909689

RESUMO

The method for quantifying the association between co-expression module and clinical trait of interest requires application of dimensionality reduction to summaries modules as one dimensional (1D) vector. However, these methods are often linked with information loss. The amount of information lost depends upon the percentage of variance captured by the reduced 1D vector. Therefore, it is of interest to describe a method using analysis of rank (AOR) to assess the association between module and clinical trait of interest. This method works with clinical traits represented as binary class labels and can be adopted for clinical traits measured in continuous scale by dividing samples in two groups around median value. Application of the AOR method on test data for muscle gene expression profiles identifies modules significantly associated with diabetes status.

20.
Glob Chall ; 5(9): 2100006, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34504716

RESUMO

High-throughput biological data has created an unprecedented opportunity for illuminating the mechanisms of tumor emergence and evolution. An important and challenging problem in deciphering cancers is to investigate the commonalities of driver genes and pathways and the associations between cancers. Aiming at this problem, a tool ComCovEx is developed to identify common cancer driver gene modules between two cancers by searching for the candidates in local signaling networks using an exclusivity-coverage iteration strategy and outputting those with significant coverage and exclusivity for both cancers. The associations of the cancer pairs are further evaluated by Fisher's exact test. Being applied to 11 TCGA cancer datasets, ComCovEx identifies 13 significantly associated cancer pairs with plenty of biologically significant common gene modules. The novel results of cancer relationship and common gene modules reveal the relevant pathological basis of different cancer types and provide new clues to diagnosis and drug treatment in associated cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA