Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.496
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39103593

RESUMO

Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.

2.
Inn Med (Heidelb) ; 2024 Aug 06.
Artigo em Alemão | MEDLINE | ID: mdl-39105759

RESUMO

Fabry's disease is a rare X chromosome-linked inherited lysosomal storage disease characterized by insufficient metabolism of the substrate globotriaosylceramide (Gb3) due to reduced alpha-galactosidase A (AGAL) activity. Lysosomal Gb3 accumulation causes a multisystemic disease which, if untreated, reduces the life expectancy in females and males by around 10 and 20 years, respectively, due to progressive renal dysfunction, hypertrophic cardiomyopathy, cardiac arrhythmia and early occurrence of cerebral infarction. The diagnosis is confirmed by determining the reduced AGAL activity in leukocytes in males and molecular genetic detection of a -mutation causing the disease in females. The treatment comprises enzyme replacement therapy (ERT), agalsidase alfa, 0.2 mg/kg body weight (BW), agalsidase beta 1.0 mg/kg BW or pegunigalsidase alfa 1.0 mg/kg BW every 2 weeks i.v. or oral chaperone therapy (one capsule of migalastat 123 mg every other day) in the presence of amenable mutations. This article summarizes the data on the treatment of Fabry's disease and on complications in practice. The current guideline recommendations are addressed and new study results that could expand the therapeutic repertoire in the future are discussed.

3.
Med Oncol ; 41(9): 214, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088082

RESUMO

Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.


Assuntos
Terapia Genética , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Terapia Genética/métodos , Regulação Neoplásica da Expressão Gênica , Animais
4.
Neurotherapeutics ; 21(4): e00427, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096590

RESUMO

Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.

5.
J Thromb Haemost ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097231

RESUMO

Adeno-associated viral vector (AAV) gene therapy provides a promising platform for treatment of monogenic inherited disorders. Clinical studies have demonstrated long-term expression with reduction in bleeding using this approach for the treatment of hemophilia. Despite these advances, there are unknowns surrounding the natural history of recombinant AAV (rAAV) vectors and the cellular mechanisms mediating vector persistence. These unknowns underpin questions regarding long-term efficacy and safety. The predominant mechanism via which AAV is proposed to persist is in circular double-stranded extrachromosomal DNA structures (episomes) within the nucleus. Studies of wild-type (WT-AAV) and rAAV have demonstrated that AAV also persists via integration into a host cell's DNA. It is important to determine whether these integration events can mediate expression or could result in any long-term safety concerns. WT-AAV infection affects a large proportion of the general population, which is thought to have no long-term sequelae. Recent studies have highlighted that this WT-AAV has been detected in cases of acute hepatitis in children and in a minority of cases of hepatocellular carcinoma. Integration following treatment using rAAV has also been reported in preclinical and clinical studies. There have been variable reports on the potential implications of integration for rAAV vectors with data in some murine studies demonstrating recurrent integration with development of hepatocellular carcinoma. These findings have not been seen in other pre-clinical or clinical studies. In this review, we will summarize current understanding of the natural history of AAV (wild-type and recombinant) with a focus on genomic integration and the cellular implications.

6.
Front Immunol ; 15: 1333150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091493

RESUMO

Immunotherapy has made significant strides in cancer treatment with strategies like checkpoint blockade antibodies and adoptive T cell transfer. Chimeric antigen receptor T cells (CAR-T) have emerged as a promising approach to combine these strategies and overcome their limitations. This review explores CAR-T cells as a living drug for cancer treatment. CAR-T cells are genetically engineered immune cells designed to target and eliminate tumor cells by recognizing specific antigens. The study involves a comprehensive literature review on CAR-T cell technology, covering structure optimization, generations, manufacturing processes, and gene therapy strategies. It examines CAR-T therapy in haematologic cancers and solid tumors, highlighting challenges and proposing a suicide gene-based mechanism to enhance safety. The results show significant advancements in CAR-T technology, particularly in structure optimization and generation. The manufacturing process has improved for broader clinical application. However, a series of inherent challenges and side effects still need to be addressed. In conclusion, CAR-T cells hold great promise for cancer treatment, but ongoing research is crucial to improve efficacy and safety for oncology patients. The proposed suicide gene-based mechanism offers a potential solution to mitigate side effects including cytokine release syndrome (the most common toxic side effect of CAR-T therapy) and the associated neurotoxicity.


Assuntos
Genes Transgênicos Suicidas , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Linfócitos T/imunologia , Animais , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
8.
Front Mol Neurosci ; 17: 1416148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086927

RESUMO

Chronic pain is common in our population, and most of these patients are inadequately treated, making the development of safer analgesics a high priority. Knee osteoarthritis (OA) is a primary cause of chronic pain and disability worldwide, and lower extremity OA is a major contributor to loss of quality-adjusted life-years. In this study we tested the hypothesis that a novel JDNI8 replication-defective herpes simplex-1 viral vector (rdHSV) incorporating a modified carbonic anhydrase-8 transgene (CA8*) produces analgesia and treats monoiodoacetate-induced (MIA) chronic knee pain due to OA. We observed transduction of lumbar DRG sensory neurons with these viral constructs (vHCA8*) (~40% of advillin-positive cells and ~ 50% of TrkA-positive cells colocalized with V5-positive cells) using the intra-articular (IA) knee joint (KJ) route of administration. vHCA8* inhibited chronic mechanical OA knee pain induced by MIA was dose- and time-dependent. Mechanical thresholds returned to Baseline by D17 after IA KJ vHCA8* treatment, and exceeded Baseline (analgesia) through D65, whereas negative controls failed to reach Baseline responses. Weight-bearing and automated voluntary wheel running were improved by vHCA8*, but not negative controls. Kv7 voltage-gated potassium channel-specific inhibitor XE-991 reversed vHCA8*-induced analgesia. Using IHC, IA KJ of vHCA8* activated DRG Kv7 channels via dephosphorylation, but negative controls failed to impact Kv7 channels. XE-991 stimulated Kv7.2-7.5 and Kv7.3 phosphorylation using western blotting of differentiated SH-SY5Y cells, which was inhibited by vHCA8* but not by negative controls. The observed prolonged dose-dependent therapeutic effects of IA KJ administration of vHCA8* on MIA-induced chronic KJ pain due to OA is consistent with the specific activation of Kv7 channels in small DRG sensory neurons. Together, these data demonstrate for the first-time local IA KJ administration of vHCA8* produces opioid-independent analgesia in this MIA-induced OA chronic pain model, supporting further therapeutic development.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39090514

RESUMO

Epidermolysis bullosa (EB) comprises rare genetic disorders characterized by skin and mucosal membrane blistering induced by mechanical trauma. Molecularly, pathogenic variants affect genes encoding proteins crucial for epidermal-dermal adhesion and stability. Management of severe EB is multidisciplinary, focusing on wound healing support, ensuring that patients thrive, and complication treatment. Despite extensive research over 30 years, novel therapeutic approaches face challenges. Gene therapy and protein therapy struggle with efficacy, while regenerative cell-based therapies show limited effects. Drug repurposing to target various pathogenic mechanisms has gained attention, as has in vivo gene therapy with drugs for dystrophic and junctional EB that were recently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). However, their high cost limits global accessibility. This review examines therapeutic advancements made over the past 5 years, exploiting a systematic literature review and clinical trial data.

10.
Int J Dermatol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086014

RESUMO

X-linked recessive ichthyosis (XLI) is a hereditary skin disease characterized by generalized dryness and scaling of the skin, with frequent extracutaneous manifestations. It is the second most common type of ichthyosis, with a prevalence of 1/6,000 to 1/2,000 in males and without any racial or geographical differences. The causative gene for XLI is the steroid sulfatase gene (STS), located on Xp22.3. STS deficiency causes an abnormal cholesterol sulfate (CS) accumulation in the stratum corneum (SC). Excess CS induces epidermal permeability barrier dysfunction and scaling abnormalities. This review summarizes XLI's genetic, clinical, and pathological features, pathogenesis, diagnosis and differential diagnoses, and therapeutic perspectives. Further understanding the role of the STS gene pathogenic variants in XLI may contribute to a more accurate and efficient clinical diagnosis of XLI and provide novel strategies for its treatment and prenatal diagnosis.

11.
Mol Ther ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39108094

RESUMO

A nine-year boy with adrenoleukodystrophy due to an ABCD1 whole gene deletion was diagnosed with the active cerebral adrenoleukodystrophy characterized by demyelination and gadolinium enhancement on brain MRI. He underwent hemopoietic cell transplant (HCT) with autologous CD34+ cells transduced with an ABCD1-expressing lentiviral vector (eli-cel, elivaldogene autotemcel) as part of the ALD-104 clinical trial. Fifty days after HCT, the patient's MRI showed gadolinium resolution; whole blood vector copy number (VCN) was 0.666 copies/mL. Six months following HCT, an MRI showed re-emergence of gadolinium enhancement; VCN had decreased to 0.029 copies/mL. Polyclonal antibodies to the ABCD1 gene product were detectable 9 months after transplant showing reactivity to peroxisomes, suggesting an immune response, however, no antibody binding to human CD34+ cells could be shown. The patient underwent a successful allogeneic HCT 12 months after gene therapy with resultant gadolinium resolution, cerebral disease stabilization, and the disappearance of antibodies. The coincident VCN loss and appearance of antibody to the ABCD1 gene product is of interest, and we postulate that it is related to the patient's whole ABCD1 gene deletion. We suggest close monitoring of loss of gene therapy efficacy due to immune response in patients with full deletions who are considering gene therapy.

12.
Curr Cardiol Rep ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110386

RESUMO

PURPOSE OF REVIEW: Precision genetic medicine is evolving at a rapid pace and bears significant implications for clinical cardiology. Herein, we discuss the latest advancements and emerging strategies in gene therapy for cardiomyopathy and heart failure. RECENT FINDINGS: Elucidating the genetic architecture of heart failure has paved the way for precision therapies in cardiovascular medicine. Recent preclinical studies and early-phase clinical trials have demonstrated encouraging results that support the development of gene therapies for heart failure arising from a variety of etiologies. In addition to the discovery of new therapeutic targets, innovative delivery platforms are being leveraged to improve the safety and efficacy of cardiac gene therapies. Precision genetic therapy represents a potentially safe and effective approach for improving outcomes in patients with heart failure. It holds promise for radically transforming the treatment paradigm for heart failure by directly targeting the underlying etiology. As this new generation of cardiovascular medicines progress to the clinic, it is especially important to carefully evaluate the benefits and risks for patients.

13.
Expert Rev Neurother ; 24(9): 879-895, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39090786

RESUMO

INTRODUCTION: High-grade glioma (HGG) is one of the most deadly and difficult cancers to treat. Despite intense research efforts, there has not been a significant breakthrough in treatment outcomes since the early 2000's. Anti-glioma gene therapy has demonstrated promise in preclinical studies and is under investigation in numerous clinical trials. AREAS COVERED: This manuscript reviews the current landscape of clinical trials exploring gene therapy treatment of HGG. Using information from clinicaltrials.gov, all trials initiated within the past 5 years (2018-2023) as well as other important trials were cataloged and reviewed. This review discusses trial details, innovative methodologies, and concurrent pharmacological interventions. The review also delves into the subtypes of gene therapy used, trends over time, and future directions. EXPERT OPINION: Trials are in the early stages (phase I or II), and there are reports of clinical efficacy in published results. Synergistic effects utilizing immunotherapy within or alongside gene therapy are emerging as a promising avenue for future breakthroughs. Considerable heterogeneity exists across trials concerning administration route, vector selection, drug combinations, and intervention timing. Earlier intervention in newly diagnosed HGG and avoidance of corticosteroids may improve efficacy in future trials. The results from ongoing trials demonstrate promising potential for molding the future landscape of HGG care.


Assuntos
Neoplasias Encefálicas , Terapia Genética , Glioma , Humanos , Glioma/terapia , Glioma/genética , Terapia Genética/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Imunoterapia/métodos , Terapia Combinada
14.
Mol Ther Methods Clin Dev ; 32(3): 101287, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39104574

RESUMO

Therapeutic innovation to address sickle cell disease (SCD) is at a historical apex, characterized by a drug discovery, development, and commercialization landscape that includes potentially curative gene therapies. Given the wide geographic distribution of SCD, with a major presence in Africa, it is imperative that new medicines are designed to meet the specific needs of persons with SCD everywhere. Target product profiles (TPPs) detail the desired attributes of new medicines and serve as a guide for drug developers. To support research efforts for curative treatments for SCD, we mobilized a large multi-disciplinary expert group to generate consensus-driven TPPs for ex vivo and in vivo SCD gene therapies, utilizing a modified Delphi methodology supplemented with virtual workshops. The main findings are TPPs that describe 20 minimal and optimal criteria for novel gene therapy products in categories of scope (3 criteria), performance/safety (11 criteria), manufacturing (4 criteria), and administration (2 criteria). TPPs for ex vivo and in vivo products differed in some performance/safety criteria and all criteria pertaining to manufacturing and administration. These outputs will ideally support development of durable treatments that are safe, efficacious, and practical for persons with SCD in global settings.

15.
Healthcare (Basel) ; 12(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120188

RESUMO

Despite the effectiveness of insulin injections in managing hyperglycemia in type 1 diabetes mellitus (T1DM), they fall short in addressing autoimmunity and regenerating damaged islets. This review aims to explore the potential and prospects of emerging treatment modalities for T1DM, including mesenchymal stem cells (MSCs), MSC-derived exosomes, gene therapy, islet allotransplantation, pancreatic islet cell transplantation, and teplizumab. We review emerging treatment modalities for T1DM, highlighting several promising strategies with varied mechanisms and outcomes. Mesenchymal stem cells demonstrate potential in modulating the immune response and preserving or restoring beta-cell function, although variability in sources and administration routes necessitates further standardization. Similarly, MSC-derived exosomes show promise in promoting beta-cell regeneration and immune regulation, supported by early-stage studies showing improved glucose homeostasis in animal models, albeit with limited clinical data. Gene therapy, utilizing techniques like CRISPR-Cas9, offers targeted correction of genetic defects and immune modulation; however, challenges in precise delivery and ensuring long-term safety persist. Islet allotransplantation and pancreatic islet cell transplantation have achieved some success in restoring insulin independence, yet challenges such as donor scarcity and immunosuppression-related complications remain significant. Teplizumab, an anti-CD3 monoclonal antibody, has demonstrated potential in delaying T1DM onset by modulating immune responses and preserving beta-cell function, with clinical trials indicating prolonged insulin production capability. Despite significant progress, standardization, long-term efficacy, and safety continue to pose challenges across these modalities. Conclusion: While these therapies demonstrate significant potential, challenges persist. Future research should prioritize optimizing these treatments and validating them through extensive clinical trials to enhance T1DM management and improve patient outcomes.

16.
Int J Mol Med ; 54(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092585

RESUMO

TMEM16 proteins, which function as Ca2+­activated Cl­ channels are involved in regulating a wide variety of cellular pathways and functions. The modulators of Cl­ channels can be used for the molecule­based treatment of respiratory diseases, cystic fibrosis, tumors, cancer, osteoporosis and coronavirus disease 2019. The TMEM16 proteins link Ca2+ signaling, cellular electrical activity and lipid transport. Thus, deciphering these complex regulatory mechanisms may enable a more comprehensive understanding of the physiological functions of the TMEM16 proteins and assist in ascertaining the applicability of these proteins as potential pharmacological targets for the treatment of a range of diseases. The present review examined the structures, functions and characteristics of the different types of TMEM16 proteins, their association with the pathogenesis of various diseases and the applicability of TMEM16 modulator­based treatment methods.


Assuntos
Anoctaminas , Proteínas de Transferência de Fosfolipídeos , Humanos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Anoctaminas/metabolismo , Anoctaminas/genética , Animais , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Terapia de Alvo Molecular , Sinalização do Cálcio/efeitos dos fármacos
17.
J Nanobiotechnology ; 22(1): 472, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118155

RESUMO

Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.


Assuntos
Biomarcadores , Exossomos , Glomerulonefrite Membranosa , Exossomos/metabolismo , Glomerulonefrite Membranosa/diagnóstico , Humanos , Animais , Prognóstico
18.
Pathol Res Pract ; 261: 155509, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39121791

RESUMO

Cancer is the main contributor for mortality in the world. Conventional therapy that available as the treatment options are chemotherapy, radiotherapy and surgery. However, these treatments are hardly cell-specific most of the time. Nowadays, extensive research and investigations are made to develop cell-specific approaches prior to cancer treatment. Some of them are photodynamic therapy, hyperthermia, immunotherapy, stem cell transplantation and targeted therapy. This review article will be focusing on the development of gene therapy in cancer. The objective of gene therapy is to correct specific mutant genes causing the excessive proliferation of the cell that leads to cancer. There are lots of explorations in the approach to modify the gene. The delivery of this therapy plays a big role in its success. If the inserted gene does not find its way to the target, the therapy is considered a failure. Hence, vectors are needed and the common vectors used are viral, non viral or synthetic, polymer based and lipid based vectors. The advancement of gene therapy in cancer treatment will be focussing on the top three cancer cases in the world which are breast, lung and colon cancer. In breast cancer, the discussed therapy are CRISPR/Cas9, siRNA and gene silencing whereas in colon cancer miRNA and suicide gene therapy and in lung cancer, replacement of tumor suppressor gene, CRISPR/Cas9 and miRNA.

19.
Neuroimage ; : 120778, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122057

RESUMO

BACKGROUND: Clinical and translational research has identified deficits in the dopaminergic neurotransmission in the striatum in Alzheimer's disease (AD) and this could be related to the pathophysiology of psychiatric symptoms appearing even at early stages of the pathology. HYPOTHESIS: We hypothesized that AD pathology in the hippocampus may influence dopaminergic neurotransmission even in the absence of AD-related lesion in the mesostriatal circuit. METHODS: We chemogenetically manipulated the activity of hippocampal neurons and astrocytes in wild-type and hemizygous TgF344-AD (Tg) rats, an animal model of AD pathology. We assessed the brain-wide functional output of this manipulation using in vivo Single Photon Emission Computed Tomography to measure cerebral blood flow and D2/3 receptor binding, in response to acute (3mg/kg i.p.) and chronic (0.015 mg/ml in drinking water, 28 days) stimulation of neurons or astrocytes with clozapine N-oxide. We also assessed the effects of the chronic chemogenetic manipulations on D2 receptor density, low or high aggregated forms of amyloid Aß40 and Aß42, astrocytes and microglial reactivity, and the capacity of astrocytes and microglia to surround and phagocytize Aß both locally and in the striatum. RESULTS: We showed that acute and chronic neuronal and astrocytic stimulation induces widespread effects on the brain regional activation pattern, notably with an inhibition of striatal activation. In the Tg rats, both these effects were blunted. Chemogenetic stimulation in the hippocampus increased microglial density and its capacity to limit AD pathology, whereas these effects were absent in the striatum perhaps as a consequence of the altered connectivity between the hippocampus and the striatum. CONCLUSIONS: Our work suggests that hippocampal AD pathology may alter mesostriatal signalling and induce widespread alterations of brain activity. Neuronal and astrocytic activation may induce a protective, Aß-limiting phenotype of microglia, which surrounds Aß plaques and limits Αß concentration more efficiently.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39141925

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that carries the worst prognosis and lacks specific therapeutic targets. To achieve accurate "cargos" delivery at the TNBC site, we herein constructed a novel biomimetic nano-Trojan horse integrating chemotherapy with gene therapy for boosting TNBC treatment. Briefly, we initially introduce the diselenide-bond-containing organosilica moieties into the framework of mesoporous silica nanoparticles (MONs), thereby conferring biodegradability to intratumoral redox conditions in the obtained MONSe. Subsequently, doxorubicin (Dox) and therapeutic miR-34a are loaded into MONSe, thus achieving the combination of chemotherapy and gene-therapy. After homologous tumor cell membrane coating, the ultimate homologous tumor cell-derived biomimetic nano-Trojan horse (namely, MONSe@Dox@miR-34a@CM) can selectively enter the tumor cells in a stealth-like fashion. Notably, such a nanoplatform not only synergistically eradicated the tumor but also inhibited the proliferation of breast cancer stem-like cells (BCSCs) in vitro and in vivo. With the integration of homologous tumor cell membrane-facilitated intratumoral accumulation, excellent biodegradability, and synergistic gene-chemotherapy, our biomimetic nanocarriers hold tremendous promise for the cure of TNBC in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA