Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Intervalo de ano de publicação
3.
Hereditas ; 161(1): 11, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454479

RESUMO

BACKGROUND: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.


Assuntos
Hordeum , Hordeum/genética , Melhoramento Vegetal , Mutagênese , Genômica
4.
Front Plant Sci ; 15: 1358565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504883

RESUMO

This breeding project, initiated at the United States Potato Genebank (USPG) in collaboration with Peruvian partners Instituto Nacional de Innovacion Agraria (INIA), International Potato Center, Peru (CIP), and local farmers, sought to enhance cold hardiness and frost tolerance in native potato cultivars in Peru. The Andes and Altiplano are often affected by frost, which causes significant reduction in yield; creating varieties with superior resilience is a critical undertaking. The goal was to transfer outstanding non-acclimated cold tolerance and acclimation capacity found in wild potato species Solanum commersonii (cmm). Breeding families segregating for cold hardiness were created using (a) a somatic hybrid cmm + haploid Solanum tuberosum (tbr) (cv. Superior, US variety from Wisconsin) as male and (b) seven cultivars native to Peru of the species S. tuberosum sbsp. andigenum (adg) as females. All plant materials were part of the USPG germplasm collection. Sexual seeds of each family were sent to Peru for evaluations under the natural conditions of the Andean highlands and Altiplano. The plants were assessed for their response to frost, and genotypes showing exceptional tolerance were selected. Plants were also evaluated for good tuber traits and yield. Initial planting involving ~2,500 seedlings in five locations resulted in selecting 58 genotypes with exceptional frost tolerance, good recovery capacity after frost, and good tuber traits. Over the years, evaluations continued and were expanded to replicated field trials in the harsher conditions of the Altiplano (Puno). All trials confirmed consistency of frost tolerance over time and location, tuber quality, and yield. After 8 years, two advanced clones were considered for cultivar release because of their exceptional frost tolerance and superior field productivity that outyielded many of the established cultivars in the region. In November 2018, a new native cultivar named Wiñay, a Quechua word meaning "to grow" was released in Peru. In 2022, a second cultivar followed with the name Llapanchispaq (meaning "for all of us"). This project evidenced that a multinational and all-encompassing approach to deploy valuable genetic diversity can work and deliver effective results. This is even more significant when outcomes can promote food security and sustainability in very vulnerable regions of the world.

6.
Annu Rev Plant Biol ; 75(1): 797-824, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38211950

RESUMO

Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud-freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.


Assuntos
Criopreservação , Plantas , Criopreservação/métodos , Crioprotetores/farmacologia , Biodiversidade , Vitrificação , Temperatura Baixa
7.
Front Plant Sci ; 14: 1270298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273944

RESUMO

Globally, wheat (Triticum aestivum L.) is a major source of proteins in human nutrition despite its unbalanced amino acid composition. The low lysine content in the protein fraction of wheat can lead to protein-energy-malnutrition prominently in developing countries. A promising strategy to overcome this problem is to breed varieties which combine high protein content with high lysine content. Nevertheless, this requires the incorporation of yet undefined donor genotypes into pre-breeding programs. Genebank collections are suspected to harbor the needed genetic diversity. In the 1970s, a large-scale screening of protein traits was conducted for the wheat genebank collection in Gatersleben; however, this data has been poorly mined so far. In the present study, a large historical dataset on protein content and lysine content of 4,971 accessions was curated, strictly corrected for outliers as well as for unreplicated data and consolidated as the corresponding adjusted entry means. Four genomic prediction approaches were compared based on the ability to accurately predict the traits of interest. High-quality phenotypic data of 558 accessions was leveraged by engaging the best performing prediction model, namely EG-BLUP. Finally, this publication incorporates predicted phenotypes of 7,651 accessions of the winter wheat collection. Five accessions were proposed as donor genotypes due to the combination of outstanding high protein content as well as lysine content. Further investigation of the passport data suggested an association of the adjusted lysine content with the elevation of the collecting site. This publicly available information can facilitate future pre-breeding activities.

8.
Front Plant Sci ; 14: 1338377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304449

RESUMO

Crop diversity conserved in genebanks facilitates the development of superior varieties, improving yields, nutrition, adaptation to climate change and resilience against pests and diseases. Cassava (Manihot esculenta) plays a vital role in providing carbohydrates to approximately 500 million people in Africa and other continents. The International Center for Tropical Agriculture (CIAT) conserves the largest global cassava collection, housing 5,963 accessions of cultivated cassava and wild relatives within its genebank. Efficient genebank management requires identifying and eliminating genetic redundancy within collections. In this study, we optimized the identification of genetic redundancy in CIAT's cassava genebank, applying empirical distance thresholds, and using two types of molecular markers (single-nucleotide polymorphism (SNP) and SilicoDArT) on 5,302 Manihot esculenta accessions. A series of quality filters were applied to select the most informative and high-quality markers and to exclude low-quality DNA samples. The analysis identified a total of 2,518 and 2,526 (47 percent) distinct genotypes represented by 1 to 87 accessions each, using SNP or SilicoDArT markers, respectively. A total of 2,776 (SNP) and 2,785 (SilicoDArT) accessions were part of accession clusters with up to 87 accessions. Comparing passport and historical characterization data, such as pulp color and leaf characteristic, we reviewed clusters of genetically redundant accessions. This study provides valuable guidance to genebank curators in defining minimum genetic-distance thresholds to assess redundancy within collections. It aids in identifying a subset of genetically distinct accessions, prioritizing collection management activities such as cryopreservation and provides insights for follow-up studies in the field, potentially leading to removal of duplicate accessions.

9.
Biosci. j. (Online) ; 39: e39020, 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1415915

RESUMO

The cocoa and chocolate production chain involves US$60 billion annually and three million farmers around the world, in an area exceeding nine million hectares. The use of wild germplasm will enable to generate new disease- and pest-resistant cultivars and ability to adapt to changing environments. Here we evaluated 145 cocoa accessions, originated from nine Amazonian basins, based on eight fruit traits. Univariate anova showed significant differences (p<0.05) for all traits. For seven traits, the variance component within basins was higher (81.5%, on average). Therefore, it is recommended that the collection of wild accessions prioritize a larger number of plants from a few populations of the most divergent basins. The multivariate analyses revealed a greater divergence between the Ji-Paraná-RO and Solimões/Amazonas-PA basins (27.69) and a greater similarity between Alien clones-PER and Solimões/Amazonas-AM (0.66) in relation to their populations. They also revealed that the accessions differentiation occurred according to the river basin system. These results allowed elucidate the genetic structure and distribution of cacao populations. In addition, strengthen the importance of collecting and conserving germplasm to preserve genetic resources.


Assuntos
Variação Genética , Cacau , Bacias Hidrográficas , Ecossistema Amazônico , Banco de Sementes
10.
Rev. mex. ing. bioméd ; 40(1): e201807EE1, Jan.-Apr. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1043134

RESUMO

Abstract Selecting a representative core collection (CC) is a proven and effective strategy for overcoming the expenses and difficulties of managing genetic resources in gene banks around the globe. Because of the diverse applications available for these sub-collections, several algorithms have been successfully implemented to construct them based on genotypic, phenotypic, passport or geographic data (either by individual datasets or by consensus). However, to the best of our knowledge, no single comprehensive datasets has been properly explored to date. Thus, researchers evaluate multiple datasets in order to construct representative CCs; this can be quite difficult, but one feasible solution for such an evaluation is to manage all available data as one discrete signal, which allows signal processing tools (SPTs) to be implemented during data analysis. In this research, we present a proof- of-concept study that shows the possibility of mapping to a discrete signal any type of data available from genetic resource collections in order to take advantage of SPTs for the construction of CCs that adequately represent the diversity of two crops. This method is referred to as 'SPT selection.' All available information for each element of the tested collections was analysed under this perspective and compared when possible, with one of the most used algorithms for CC selection. Genotype-only SPT selection did not prove as effective as standard CC selection did not prove as effective as standard CC selection algorithms; however, the SPT approach can consider genotype alongside other types of information, which results in well-represented Ccs that consider both the genotype and agromorphological diversities present in original collections. Furthermore, SPT-based analysis can evaluate all available data both in a comprehensive manner and under different perspective, and despite its limitations, the analysis renders satisfactory results. Thus, SPT-based algorithms for CC selection can be valuable in the field of genetic resources research, management and exploitation.


Resumen La selección de una colección núcleo (core-collection) representativa (CC) es una estrategia comprobada y eficaz para superar los gastos y las dificultades de la gestión de los recursos genéticos en los bancos de germoplasma de todo el mundo. Debido a las diversas aplicaciones disponibles para estas subcolecciones, se han implementado con éxito varios algoritmos para construirlos en base a datos genotípicos, fenotípicos, de pasaporte o geográficos (ya sea por conjuntos de datos individuales o por consenso). Sin embargo, hasta donde tenemos conocimiento, no se han explorado adecuadamente conjuntos de datos integrales hasta la fecha. Por lo tanto, los investigadores evalúan conjuntos de datos múltiples para construir CCs representativos; esto puede ser bastante difícil, pero una solución factible para tal evaluación es administrar todos los datos disponibles como una señal discreta, que permite implementar herramientas de procesamiento de señal (SPT) durante el análisis de datos. En esta investigación, presentamos un estudio de prueba de concepto que muestra la posibilidad de asignar a una señal discreta cualquier tipo de datos disponibles de colecciones de recursos genéticos para aprovechar los SPT para la construcción de CC que representen adecuadamente la diversidad de dos cultivos. Este método se conoce como "selección de SPT." Toda la información disponible para cada elemento de las colecciones analizadas se analizó bajo esta perspectiva y se comparó cuando fue posible, con uno de los algoritmos más utilizados para la selección de CC. La selección de SPT de solo genotipo no resultó tan efectiva como los algoritmos de selección de CC estándar; sin embargo, el enfoque SPT puede considerar el genotipo junto con otros tipos de información, lo que da como resultado CCs bien representados que consideran tanto el genotipo como las diversidades agromorfológicas presentes en las colecciones originales. Además, el análisis basado en SPT puede evaluar todos los datos disponibles, tanto de manera integral y bajo diferentes perspectivas, y a pesar de sus limitaciones, el análisis arroja resultados satisfactorios. Por lo tanto, los algoritmos basados en SPT para la selección de CC pueden ser valiosos en el campo de la investigación, gestión y explotación de recursos genéticos.

11.
Rev. bras. plantas med ; 14(spe): 138-142, 2012. ilus, tab
Artigo em Português | LILACS | ID: lil-648537

RESUMO

Entre as espécies do gênero Passiflora, a P. foetida L. apresenta a maior variabilidade genética e tem grande importância medicinal, pois é usada no tratamento de doenças como asma, icterícia, e na forma de emplastros, para as erisipelas e doenças de pele com inflamação. Portanto, são necessários estudos que visem a micropropagação e conservação. As sementes de P. foetida L. apresentam dormência e muitas vezes, levam alguns meses para germinar, produzindo mudas desuniformes e de baixo vigor. Neste sentido, a cultura de tecidos apresenta-se como uma forma alternativa a propagação. Assim, o objetivo do trabalho foi estabelecer e micropropagar P. foetida L., para formação de um banco de germoplasma. Para tanto, sementes foram escarificadas, desinfestadas e inoculadas em meio MS(½) sem reguladores de crescimento e cultivados por 66 dias. Explantes de hipocótilos obtidos de plantas germinadas in vitro, foram cultivados no mesmo meio suplementado com 1,0 mg L-1 de BAP. Na fase de estabelecimento, 45% dos explantes brotaram e formaram gemas axilares. 88,9% dos explantes de hipocótilo induziram brotação e 11,1% produziram calos. Plântulas regeneradas com 1,82 cm de altura, com raízes foram aclimatadas.


Among the species of the genus Passiflora, P. foetida L. presents highest genetic variability and also great medicinal importance. This species is used in the treatment of diseases such as asthma, jaundice, and in the form of poultices for erysipelas and skin diseases with inflammation. Therefore, studies are needed to preserve them. Its seeds present dormancy and often take several months to germinate. The tissue culture is a alternative form to propagate species. The objective was to establish and micropropagation P. foetida L., and create a germplasm bank. Seeds were scarified, disinfected, and inoculated on MS medium (½) without regulators for 66 days. Hypocotyls explants obtained of seedlings in vitro germinated were transferred and placed in the same medium supplemented with BAP (1,0 mg L-1). In the establishment phase of 45% of the explants sprouted and formed axillary buds. 88,9% of hypocotyl explants induced shoots and 11,1% produced callus. Seedling measuring 1,82 cm length and rooted were acclimatized.


Assuntos
Reprodução , Passiflora/classificação , Passiflora/crescimento & desenvolvimento , Plantas Medicinais , Banco de Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA