Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273231

RESUMO

Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the ethyl acetate fraction of Thua Nao (TN-EA) exhibits strong anti-cancer potential against HeLa cells. High-performance liquid chromatography (HPLC) analysis identified genistein and daidzein as the major isoflavones in TN-EA responsible for its anti-cancer activity. TN-EA and genistein reduced cell proliferation and induced G2/M phase arrest, while daidzein induced G1 arrest. These responses were associated with the downregulation of cell cycle regulators, including Cyclin B1, cycle 25C (Cdc25C), and phosphorylated cyclin-dependent kinase 1 (CDK-1), and the upregulation of the cell cycle inhibitor p21. Moreover, TN-EA and its active isoflavones promoted apoptosis in HeLa cells through the intrinsic pathway, evidenced by increased levels of cleaved Poly (ADP-ribose) polymerase (PARP) and caspase-3, loss of mitochondrial membrane potential, and the downregulation of anti-apoptotic proteins B-cell leukemia/lymphoma 2 (Bcl-2), B-cell lymphoma-extra-large (Bcl-xL), cellular inhibitor of apoptosis proteins 1 (cIAP), and survivin. Additionally, TN-EA and its active isoflavones effectively reduced cell invasion and migration by downregulating extracellular matrix degradation enzymes, including Membrane type 1-matrix metalloproteinase (MT1-MMP), urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR), and reduced the levels of the mesenchymal marker N-cadherin. At the molecular level, TN-EA suppressed STAT3 activation via the regulation of JNK and Erk1/2 signaling pathways, leading to reduced proliferation and invasion of HeLa cells.


Assuntos
Apoptose , Proliferação de Células , Glycine max , Isoflavonas , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fermentação , Glycine max/química , Células HeLa , Isoflavonas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Heliyon ; 10(18): e37696, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323827

RESUMO

Hypoxic-ischemic (HI) can cause neonatal brain damage leading to disability. Patients with HI experience long-term neurological issues impacting quality of life. Limited clinical treatments are available despite extensive research on HI's molecular mechanisms. Genistein-3'-sodium sulfonate (GSS), a phytoestrogen, has been found to improve acute brain injury in neonatal rats caused by hypoxic-ischemia, but its potential for chronic stage neurological recovery in HI is unknown. HI neonatal rats were treated with 1 mg/kg GSS once a day for 21 days. Then, a series of behavioral experiments was performed to evaluate the learning, memory, cognition, anxiety level and depression-like behaviors of the rats. GSS treatment reduced neuronal loss, enhanced learning, memory and cognitive function while also alleviated anxiety and depression-like behaviors in HI rats during the recovery period. These findings indicated that GSS exerted enhance neurological function in HI rats during the chronic stage, prompting further research on how it works to potentially develop new therapies.

3.
Curr Res Food Sci ; 9: 100827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39281341

RESUMO

The exposure of advanced glycation end products (AGEs) can induce chronic inflammation, oxidative stress, and accelerated aging, contributing the onset and progression of many diseases especially diabetic complications. Therefore, the searching of antiglycative foods is of practical significance, which may serve as a strategy in the attenuation of AGEs-associated diseases. In this study, we evaluated the antiglycative potential of some beans and bean sprouts that were common in our daily life. The results revealed that sprouting enhanced the antiglycative activity of beans, with black soybean sprouts demonstrating the highest efficacy (4.92-fold higher than the unsprouted beans). To assess practical implications, we examined the antiglycative activity of black soybean sprouts in pork soup, a popular food model that incorporates sprouts. Our findings confirmed the inhibitory effect on a dose-dependent manner. Through open column fractionation, we identified isoflavones and soyasaponin Bb as the candidates responsible for these effects. Additionally, compare to the unsprouted black soybeans, we found significant increases in the levels of antioxidative properties (2.51-fold), total phenolics (7.28-fold), isoflavones, and soyasaponin Bb during the sprouting process. Further studies determined that genistein, genistin, and daidzin were the major antiglycative compounds in black soybean sprouts. Collectively, this study emphasizes the benefits of sprouted beans and offers foundation for the development of functional sprouting foods.

4.
J Pharm Pharmacol ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245043

RESUMO

OBJECTIVES: In recent years, there has been a growing interest in targeting ferroptosis for the treatment and prevention of multiple cancers. This study aimed to assess the contribution of ferroptosis to the antiproliferative effects of genistein (GN) and daidzein (DZ) in breast cancer cell lines. METHODS: MDA-MB-231 and MCF-7 cells were employed as an in vitro model. The antiproliferative effects of GN and DZ were determined by WST-1 assay in the presence of specific inhibitors of different cell death pathways. The mRNA expressions of Gpx4 and Fsp-1, the levels of lipid peroxidation, glutathione (GSH)/glutathione disulfide (GSSG) ratio, and intracellular iron ion content were assessed in GN- or DZ-treated cells. RESULTS: GN and DZ were found to cause ferroptotic cell death in MDA-MB-231, as confirmed by the reversal of viability when cells were pretreated with ferrostatin-1. Furthermore, both phytochemicals induced biochemical markers of ferroptosis, including lipid peroxidation and iron ions levels, and decreased GSH/GSSG levels. The mRNA expression levels of the main anti-ferroptotic genes, Gpx4 and Fsp-1, were diminished by the treatment of both phytochemicals. Surprisingly, ferroptosis did not play a role in GN- or DZ-induced cell death in MCF-7 cells. CONCLUSION: Our findings highlight the potential of GN and DZ as ferroptosis inducers in triple-negative breast cancer cells.

5.
Int J Biol Macromol ; 279(Pt 4): 135300, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236942

RESUMO

Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.

6.
Foods ; 13(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39272574

RESUMO

The digestive properties of starch are crucial in determining postprandial glycaemic excursions. Genistein, an active phytoestrogen, has the potential to influence starch digestion rates. We investigated the way genistein affected the digestive properties of starch in vitro. We performed enzyme kinetics, fluorescence spectroscopy, molecular docking, and molecular dynamics (MD) simulations for analysing the inhibitory properties of genistein on starch digestive enzymes as well as clarifying relevant mechanism of action. Our findings demonstrated that, following the addition of 10% genistein, the contents of slowly digestible and resistant starches increased by 30.34% and 7.18%, respectively. Genistein inhibited α-amylase and α-glucosidase, with half maximal inhibitory concentrations of 0.69 ± 0.06 and 0.11 ± 0.04 mg/mL, respectively. Genistein exhibits a reversible and non-competitive inhibiting effect on α-amylase, while its inhibition on α-glucosidase is a reversible mixed manner type. Fluorescence spectroscopy indicated that the presence of genistein caused declining fluorescence intensity of the two digestive enzymes. Molecular docking and MD simulations showed that genistein binds spontaneously to α-amylase via hydrogen bonds, hydrophobic interactions, and π-stacking, whereas it binds with α-glucosidase via hydrogen bonds and hydrophobic interactions. These findings suggest the potential for developing genistein as a pharmacologic agent for regulating glycaemic excursions.

7.
Acta Neuropsychiatr ; : 1-7, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39327861

RESUMO

OBJECTIVE: Traumatic brain injury (TBI)-induced anxiety is a common but under-investigated disorder, for which neuroinflammation is a significant contributor. Here we aim to investigate the protective effects of genistein, a plant-derived anti-inflammatory drug, against TBI-induced anxiety, and the underlying mechanisms. METHODS: A rat model of TBI was constructed using the lateral fluid percussion injury method. Genistein at the doses of 5, 10, and 20 mg/kg were used to treat rats at 30 min, 12 h, 24 h, 48 h, and 72 h up to 14 days after TBI. The evaluation of neurological deficit was performed preoperatively, on days 1, 3, 7, and 14 after TBI. The elevated plus maze test was carried out to assess anxiety and explorative behaviours, and the open field test was performed to assess locomotive activities. Brain injury was assessed by measuring brain water content and TdT-mediated dUTP Nick-End Labeling staining. Inflammatory responses were examined using enzyme-linked immunosorbent assay. The mRNA and protein expression were analysed using real-time polymerase chain reaction and Western blot, respectively. RESULTS: In the behavioural level, genistein treatment alleviated TBI-induced anxiety behaviours and neurological deficit in rats. In the meanwhile, brain oedema was also reduced by genistein treatment, showing alleviating effects of genistein at the pathological level. TUNEL staining also showed reduced apoptosis in rats treated with genistein. Genistein also inhibited Nlrp3/caspase-1 signalling, unveiling the effects of genistein in altering molecular pathways in brains with TBI. CONCLUSION: Genistein alleviates anxiety-like behaviours in TBI rats, which may be mediated via inhibiting Nlrp/caspase-1 signalling pathway.

8.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39338329

RESUMO

The major environmental factor responsible for skin cancer is ultraviolet (UV) radiation, present in sunlight. UV radiation is directly linked to the production of reactive oxygen species (ROS), which accumulate in exposed cells and cause serious damage. The antioxidant systems present in cells cannot always sufficiently neutralize the ROS. Therefore, supplementation with exogenous antioxidants has been proposed. The antioxidant properties of some isoflavones, such as genistein, have already been well-proven. Genistein has limited bioavailability. However, its derivatives, with increased lipophilicity, could facilitate its transfer into cells, where they can expose its antioxidative potential. This study aims to investigate three genistein derivatives, with greater lipophilicity than the native compound, regarding their cytotoxicity, antioxidative properties, and effect on the cell cycle in normal human dermal fibroblasts (NHDF) and a melanoma cancer cell line (Me45). Results showed that lipophilic modification of the genistein molecule changes the biological response of NHDF and Me45 cell lines to UV-C radiation, but the lipophilicity cannot be directly linked with the activity of the compounds. A comparison of the effects of the genistein derivatives on healthy and cancerous cells suggests that their mode of action strongly depends on the type of cell involved.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39126575

RESUMO

5-Fluorouracil (5-FU) is commonly used as a chemotherapeutic drug for advanced HCC. However, the effectiveness of 5-FU is limited by the emergence of resistance and poor targeting efficiency. Combining 5-FU with natural compounds has shown promise in HCC treatment. In this study, we prepared carrier-free nanoparticles (GEN-Cu-GEN@FUA) containing 5-FU and genistein (GEN) in a synergistic ratio via a green synthesis procedure. The resulting GEN-Cu-GEN@FUA nanoparticles had a spherical or near spherical shape, a dynamic size of 129.3 ± 40.1 nm, and a high drug loading content of approximately 21.40% (5-FU) and 61.48% (GEN). These nanoparticles exhibited approximately 3.6-fold lower IC50 value than 5-FU alone in Bel-7402 cells and resulted in a 3.7-fold greater reduction in tumor weight compared to 5-FU alone in Bel-7402 tumor-bearing BALB/c mice. Importantly, the nanoparticles showed negligible systemic toxicity due to their synergistic effect on cancer cell dysfunction and significant amplification of intracellular glutathione consumption. Our findings suggest that the developed carrier-free nanomedicines offer a highly promising platform for the co-delivery of genistein (GEN) copper(II) complexes and 5-FU, with easy fabrication and great potential for clinical translation in HCC synergistic therapy.

10.
AMB Express ; 14(1): 90, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105988

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, with symptoms appearing in the cerebral cortex and hippocampus. amyloid ß peptide (Aß) has been shown to deposit in the brain, causing oxidative stress and inflammation, leading to impaired memory and learning. Lactocaseibacillus fermentation can produce deglycosylated isoflavones with high physiological activity, which can scavenge free radicals, enhance total antioxidant capacity and inhibit oxidative inflammatory responses. Therefore, in this study, Lactocaseibacillus paracasei subsp. paracasei NTU101 (NTU101) fermented soybean milk and its extracts were used as test substances, and AD model rats were established by infusion of Aß40 in the brain for 28 days, and the preventive and ameliorating effects of NTU 101 fermented soymilk were discussed. Effects of soymilk and unfermented soymilk on AD, and explore its effects on AD. Main functional ingredients. The results showed that deglycosylated isoflavones in NTU101 fermented soybean milk improved AD symptoms. Mechanisms of actions include the inhibition of oxidative inflammation; reduction in the expression of risk factors for tau protein and apo E protein production, the deposition of Aß40 around the hippocampus, and the expression of TLR-2 and RAGE proteins in astrocytes and microglia; and improvement in the memory and learning ability.

11.
J Appl Toxicol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191459

RESUMO

In a read-across assessment of the safety of genistein and daidzein in cosmetic products, additional information was required to account for differences in their systemic exposure after topical application in a typical body lotion formulation. Therefore, we measured the penetration and metabolism of two doses (3 and 30 nmoles/cm2) of genistein and daidzein applied in ethanol and in a body formulation to fresh pig skin, fresh and frozen human skin, and PhenionFT models. Both chemicals readily penetrated all skin models when applied in ethanol. The same sulfate and glucuronide metabolites were formed in fresh pig skin, fresh human skin, and PhenionFT models, which also all demonstrated that (a) these pathways could be saturated between 3 and 30 nmoles/cm2 and (b) the extent of metabolism of daidzein was lower than genistein. Although the relative amounts of radiolabeled chemical in human skin and medium compartments were altered by freezing, their overall bioavailability was not affected. The greatest impact on the bioavailability and distribution of both chemicals was observed when they were applied in the formulation. Most of the dose applied in the formulation was retained on the skin surface, especially at 30 nmoles/cm2 (60%-90%), resulting in much lower amounts in the medium and/or skin. In conclusion, all four skin models demonstrated first-pass metabolism of genistein and daidzein and a marked alteration in their disposition by applying them in a body lotion formulation. This supports the use of fresh pig skin and PhenionFT models as alternatives to human skin for investigating skin metabolism and formulation effects for these two chemicals. The results were used to develop the dermal module of a PBPK model and dose setting for organ-on-chip experiments. They could also be used to refine internal exposure estimates in regulatory safety assessments.

12.
J Appl Toxicol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191458

RESUMO

OECD test guideline compliant skin penetration studies, which also comply with the SCCS basic criteria, are lacking for genistein and daidzein. Therefore, we have measured their penetration and metabolism using ex vivo explants of fresh (i.e., metabolically viable) pig skin, fresh and frozen human skin, and Phenion full-thickness (FT) models. Preliminary studies using fresh pig skin helped to define the optimal experimental conditions. The dermal absorption of 10 nmoles/cm2 genistein and daidzein in ethanol was comparable in all four models. A first-pass metabolism in skin to glucuronide and sulfate metabolites was demonstrated for both chemicals in all models except frozen human skin. The main difference between fresh skin models was the overall extent of metabolism and the relative ratio of each metabolite, for example, much lower sulfate conjugates were formed in pig skin incubations. The extent of parent chemical metabolized and the contribution of the glucuronide pathway were relatively lower in PhenionFT models than in fresh human skin, possibly due to a higher penetration rate in this model and differences in the expression of functional metabolizing enzymes. When metabolism in human skin was abolished by freezing, more radiolabelled chemical remained in the skin tissue but the overall dermal absorption was unchanged. In conclusion, this initial characterization study showed that all models tested indicated that genistein and daidzein extensively penetrated the skin when applied to skin in ethanol. All fresh skin models produced the same metabolites, with the known species difference in the sulfation pathway demonstrated in pig skin.

13.
Zhonghua Nan Ke Xue ; 30(6): 531-539, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39212363

RESUMO

OBJECTIVE: To explore the mechanisms of Qianlie Jindan Tablets (QLJD) acting on chronic nonbacterial prostatitis (CNP) in rats based on non-targeted urine metabolomics. METHODS: According to the body mass index, we equally randomized 30 eight-week-old male SD rats into a blank control, a CNP model control and a QLJD medication group. We established the CNP model in the latter groups and, from the 4th day of modeling, treated the rats in the blank and model control groups intragastrically with normal saline and those in the QLJD medication group with QLJD suspension, qd, for 30 successive days. Then we detected the changes in the metabolites of the rats by ultra-high-performance liquid chromatography-tandem mass spectrometry, and identified the differential metabolites in different groups by multivariate statistical analysis, followed by functional annotation of the differential metabolites. RESULTS: Eight common metabolites were identified by metabolomics analysis, of which 5 were decreased in the CNP model controls and increased in the QLJD medication group, while the other 3 increased in the former and decreased in the latter group. Creatinine and genistein were important differential metabolites, and the arginine and proline metabolic pathways and isoflavone biosynthesis pathways were the main ones for QLJD acting on CNP. Compared with the blank controls, the model controls showed up-regulated arginine and proline metabolic pathways, increased production of creatinine, down-regulated isoflavone biosynthetic pathway and decreased production of genistein. The above changes in the model controls were all reversed in the QLJD medication group. CONCLUSION: QLJD acts effectively on CNP in male rats by regulating L-arginine and proline metabolic pathways, as well as the isoflavone biosynthesis pathway and naringenin metabolism.


Assuntos
Medicamentos de Ervas Chinesas , Metabolômica , Prostatite , Ratos Sprague-Dawley , Masculino , Animais , Ratos , Prostatite/metabolismo , Prostatite/urina , Prostatite/tratamento farmacológico , Metabolômica/métodos , Comprimidos , Cromatografia Líquida de Alta Pressão , Arginina/metabolismo , Doença Crônica , Genisteína/urina , Prolina/urina , Prolina/metabolismo , Modelos Animais de Doenças , Creatinina/urina , Creatinina/metabolismo , Espectrometria de Massas em Tandem
14.
Biomedicines ; 12(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39200093

RESUMO

Endocrine-disrupting chemicals (EDCs) have become so pervasive in our environment and daily lives that it is impossible to avoid contact with such compounds, including pregnant women seeking to minimize exposures to themselves and their unborn children. Developmental exposure of humans and rodent models to bisphenol A (BPA) and other EDCs is linked to increased anxiogenic behaviors, learning and memory deficits, and decreased socio-sexual behaviors. Prenatal exposure to BPA and other EDCs leads to longstanding and harmful effects on gut microbiota with reductions in beneficial bacteria, i.e., gut dysbiosis, and such microbial changes are linked to host changes in fecal metabolites, including those involved in carbohydrate metabolism and synthesis, and neurobehavioral alterations in adulthood, in particular, social and cognitive deficits. Gut dysbiosis is increasingly being recognized as a key driver of a myriad of diseases, ranging from metabolic, cardiovascular, reproductive, and neurobehavioral disorders via the gut-microbiome-brain axis. Thus, EDCs might induce indirect effects on physical and mental health by acting as microbiome-disrupting chemicals. Findings raise the important question as to whether pregnant women should consume a probiotic supplement to mitigate pernicious effects of EDCs, especially BPA, on themselves and their unborn offspring. Current studies investigating the effects of maternal probiotic supplementation on pregnant women's health and that of their unborn offspring will be reviewed. Data will inform on the potential application of probiotic supplementation to reverse harmful effects of EDCs, especially BPA, in pregnant women unwittingly exposed to these compounds and striving to give their offspring the best start in life.

15.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39201705

RESUMO

The prevalence of obesity and related consequences, including insulin resistance and Alzheimer's-like neuropathology, has increased dramatically. Contributing to this prevalence is the shift in lifestyle preference away from wholesome foods and exercise to the Western-style diet and sedentarism. Despite advances in drug development, a healthy diet and regular exercise remain the most effective approaches to mitigating the unwanted sequelae of diet-induced obesity on brain health. In this study, we used the high-fat high-sugar (HFHS) mouse model of neurodegeneration to examine the effects of exercise training (HFHS+Ex), genistein treatment (HFHS+Gen), and combination treatment (HFHS+Ex+Gen) on proteins relating to neurodegeneration in the brain of male mice. After a period of 12 weeks, as expected, HFHS feeding increased body weight, adipose tissue weight, and systemic plasma inflammation (TNF-α) compared to lean mice fed a standard diet. HFHS feeding also increased protein expression of brain markers of insulin resistance (pGSK-3ß, p-IR), apoptosis (caspase 3), early neurofibrillary tangles (CP13), and amyloid-beta precursor (CT20). Compared to HFHS mice, Ex decreased body weight, plasma TNF-α, and expression of pGSK-3ß, caspase 3, CP13, amyloid-ß precursor (22c11), and ADAM10. Treatment with Gen was equally protective on these markers and decreased the expression of p-IR. Combination treatment with Ex and Gen afforded the greatest overall benefits, and this group exhibited the greatest reduction in body and adipose tissue weight and all brain markers, except for 22c11 and ADAM10, which were decreased compared to mice fed an HFHS diet. In addition, levels of 4G8, which detects protein levels of amyloid-ß, were decreased with combination treatment. Our results indicate that exercise training, genistein supplementation, or combination treatment provide varying degrees of neuroprotection from HFHS feeding-induced Alzheimer's pathology. Future perspectives could include evaluating moderate exercise regimens in combination with dietary supplementation with genistein in humans to determine whether the same benefits translate clinically.


Assuntos
Doença de Alzheimer , Encéfalo , Dieta Hiperlipídica , Genisteína , Condicionamento Físico Animal , Animais , Masculino , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Genisteína/farmacologia , Genisteína/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Biomarcadores , Resistência à Insulina , Secretases da Proteína Precursora do Amiloide/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Peso Corporal/efeitos dos fármacos , Açúcares da Dieta/efeitos adversos , Caspase 3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
16.
Biomedicines ; 12(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39200101

RESUMO

The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.

17.
Poult Sci ; 103(10): 103952, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067120

RESUMO

Genistein (GEN) and Glycitein (GLY), are types of isoflavone extracted mainly from soy plants, although GEN is associated with stronger antioxidant and growth-promoting effects. The impact of dietary GEN and GLY on reproductive performance, egg quality, and bone quality were investigated in the study. Additionally, to explore the underlying mechanism of action, the serum hormone levels and reproductive-related genes were investigated. A total of 378 Hy-Line Brown laying hens (120 days old) were randomly allocated to 3 dietary groups (Control), (GLY, and GEN at 50 mg/kg respectively) for a period of 8 wk. Each treatment has 126 birds (7 replicates of 18 birds each). Results were analyzed in 2 phases: wk 1 to 4, and 5 to 8 of feeding trial. The results indicated that supplemental GEN significantly increased egg number, hen-day production (HDP), and egg mass during wk 1 to 4, whereas, both glycitein and genistein increased egg number, egg weight, egg mass, HDP and improved feed-egg-ratio during wk 5 to 8. Egg quality analysis revealed significant improvements in eggshell quality; gloss, thickness, strength, and albumen quality indices (albumen height, Haugh unit, thick albumen fraction) due to dietary treatments. Also, the tibia strength, Ca content in the tibia ash and bone mineral content, were significantly increased by the dietary treatments. Significant increases in the serum levels of E2, LH, FSH, T3, T4, and GH, and the activity of antioxidant enzymes; SOD, CAT, GSH while reducing the level of MDA, was notable with the treatments. Additionally, reproductive-related genes: ESR1, FSHR, PRLR, GNRH1 were significantly upregulated by the supplementation of GEN and GLY. The efficacy of GEN in relation to the evaluated parameters was superior to that of GLY. Conclusively, we speculate that the improvement on laying performance, egg quality and tibia quality may be related to promoting effect of isoflavones on calcium metabolism, antioxidant function, reproductive hormones and related genes. Therefore, supplemental GEN at a dosage level of 50 mg/kg, can be used to promote laying performance, sustain egg production and maintain the physiological function of young laying hens.


Assuntos
Ração Animal , Antioxidantes , Galinhas , Dieta , Genisteína , Isoflavonas , Reprodução , Animais , Genisteína/farmacologia , Genisteína/administração & dosagem , Galinhas/fisiologia , Galinhas/genética , Feminino , Dieta/veterinária , Antioxidantes/metabolismo , Ração Animal/análise , Isoflavonas/administração & dosagem , Isoflavonas/farmacologia , Reprodução/efeitos dos fármacos , Distribuição Aleatória , Suplementos Nutricionais/análise , Óvulo/efeitos dos fármacos , Óvulo/fisiologia
18.
Int J Biol Macromol ; 276(Pt 1): 133854, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004253

RESUMO

The research study focused on the development and characterization of sustained release formulation of genistein (GEN)-loaded chitosan (CS) nanoparticles to deliver in the form of dry powder inhaler (DPI) via pulmonary route to offer higher stability and anti-diabetic activity. The GEN-loaded nanoparticles were prepared by cross-linking reaction of CS and sodium hexametaphosphate (SHMP). The optimized formulation displayed particle size (PS) of 684.2 ± 26.5 nm, zeta potential (ZP) of 19.6 ± 4.50 mV, % entrapment efficiency (% EE) of 87.33 ± 8.46 % and drug release profile of 85.48 ± 5.50 % for 48 h. The in-vivo studies exhibited a superior sustained release formulation of GEN in the regulation of blood glucose levels (BGLs). The powder showed the emitted fraction (EF) of 86.76 % and effective inhalation index (EI) of 85.41 %. The reduction of BGLs (85 %) was observed in the diabetic group. This might be due to the inhibition of proliferation of pancreatic ß-cells (growth factor inhibition targeting cAMP and ERK1/2 pathway), antioxidative activity, reducing insulin resistance, and the adipose tissue mass and alteration of the hepatic glucose metabolism. Hence, these results proved the delivery of GEN in the form of DPI system as a favorable route for treating type-1 diabetes mellitus with a longer duration of action.


Assuntos
Glicemia , Quitosana , Genisteína , Nanopartículas , Quitosana/química , Nanopartículas/química , Genisteína/farmacologia , Genisteína/química , Animais , Glicemia/efeitos dos fármacos , Ratos , Administração por Inalação , Liberação Controlada de Fármacos , Tamanho da Partícula , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química
19.
Chem Biol Interact ; 400: 111159, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059603

RESUMO

The activation and polarization of astrocytes are involved in neuroinflammation and brain functional rehabilitation after ischemic stroke. Our previous studies display the neuroprotective effect of genistein-3'-sodium sulfonate (GSS) in the acute phase of cerebral ischemia-reperfusion injury (CI/RI). This study aimed to investigate the brain function improvement of GSS during the recovery period after CI/RI in rats and to explore the potential mechanism from the perspective of astrocyte activation and polarization. The transient middle cerebral artery occlusion (tMCAO) rats were treated with GSS (1 mg/kg) continuously for 28 days. The behavior tests were measured to assess neurological function. The mRNA and protein expression in affected cerebral cortex were detected on day 29 after tMCAO. Our results demonstrated that GSS treatment significantly improved the spatial and temporal gait parameters in the Catwalk gait test, prolonged the time on the stick and increased the rotation speed in the rotarod test, and decreased the time to find the hidden platform and increased the time in the target quadrant in the Morris water maze test. In addition, GFAP, GBP2, C3, IL-1ß protein expressions and Nos2A mRNA level were decreased, while Nrf2, BDNF, IL-10 protein expressions and Sphk1 and Nef2l2 mRNA levels increased after GSS treatment. Interestingly, GSS presented a strong binding affinity to TLR4 and suppressed the activation of NF-κB signaling. In conclusion, GSS can promote brain function recovery by inhibiting astrocyte activation and polarization to A1 phenotype, and enhancing astrocyte polarization to A2 phenotype via inactivating TLR4/NF-κB signaling, which provide a candidate compound for clinical rehabilitation therapy in the recovery period after ischemic stroke.


Assuntos
Astrócitos , Genisteína , NF-kappa B , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Masculino , Genisteína/farmacologia , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Receptor 4 Toll-Like/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
20.
Heliyon ; 10(11): e32243, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947477

RESUMO

The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA