Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bull Exp Biol Med ; 175(4): 446-449, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37768458

RESUMO

The non-competitive NMDA glutamate receptor antagonist memantine has neuroprotective properties and is the first non-cholinergic drug approved for the treatment of Alzheimer's disease. The purpose of this work was to test the hypothesis that injections of memantine to healthy animals can affect the subunit composition of NMDA receptors in the brain, which may explain the effects of its chronic administration. For this, the expression of subunits GluN1, GluN2A, GluN2B, and GluN2C was studied in the hippocampus and prefrontal cortex of rats after single or five subchronic injections of memantine. The results showed that the GluN2C subunit (GRIN2C) plays an important role in the effects of memantine; against the background of memantine treatment, the expression of this subunit markedly decreased in the prefrontal cortex, but not in the hippocampus, which significantly affected the excitation/inhibition balance in cortical structures.


Assuntos
Doença de Alzheimer , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico
2.
Biol Chem ; 404(4): 255-265, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36427206

RESUMO

The GluN2C subunit exists predominantly, but not exclusively in NMDA receptors within the cerebellum. Antagonists such as UBP1700 and positive allosteric modulators including PYD-106 and 3-acylamino-2-aminopropionic acid derivatives such as UA3-10 ((R)-2-amino-3-{[5-(2-bromophenyl)thiophen-2-yl]carboxamido}propionic acid) represent promising tool compounds to investigate the role of GluN2C-containing NMDA receptors in the signal transduction in the brain. However, due to its high polarity the bioavailability and CNS penetration of the amino acid UA3-10 are expected to be rather low. Herein, three ester prodrugs 12a-c of the NMDA receptor glycine site agonist UA3-10 were prepared and pharmacokinetically characterized. The esters 12a-c showed higher lipophilicity (higher logD 7.4 values) than the acid UA3-10 but almost the same binding at human serum albumin. The acid UA3-10 was rather stable upon incubation with mouse liver microsomes and NADPH, but the esters 12a-c were fast hydrolyzed to afford the acid UA3-10. Incubation with pig liver esterase and mouse serum led to rapid hydrolysis of the esters 12a-c. The isopropyl ester 12c showed a promising logD 7.4 value of 3.57 and the highest stability in the presence of pig liver esterase and mouse serum. These results demonstrate that ester prodrugs of UA3-10 can potentially afford improved bioavailability and CNS penetration.


Assuntos
Pró-Fármacos , Receptores de N-Metil-D-Aspartato , Camundongos , Humanos , Animais , Suínos , Receptores de N-Metil-D-Aspartato/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Ésteres , Sítios de Ligação , Esterases/metabolismo
3.
Neuropharmacology ; 201: 108818, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34610288

RESUMO

N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a subtype of ionotropic glutamate receptor with important roles in CNS function. Since excessive NMDAR activity can lead to neuronal cell death and epilepsy, there is interest in developing NMDAR negative allosteric modulators (NAMs) as neuroprotective agents. In this study, we characterize the inhibitory properties of a novel NMDAR antagonist, UBP792. This compound displays partial subtype-selectivity by having a varied maximal inhibition of GluN2A-, GluN2B-, GluN2C-, and GluN2D-containing receptors (52%, 70%, 87%, 89%, respectively) with IC50s 4-10 µM. UBP792 inhibited NMDAR responses by reducing l-glutamate and glycine potencies and efficacies. Consistent with non-competitive inhibition, increasing agonist concentrations 30-fold did not reduce UBP792 potency. UBP792 inhibition was also not competitive with the structurally-related positive allosteric modulator (PAM) UBP684. UBP792 activity was voltage-independent, unaffected by GluN1's exon-5, and reduced at low pH (except for GluN1/GluN2A receptors which were more sensitive at acidic pH). UBP792 binding appeared independent of agonist binding and may be entering the plasma membrane to gain access to its binding site. Inhibition by UBP792 is reduced when the ligand-binding domain (LBD) of the GluN2 subunit, but not that of the GluN1 subunit, is cross-linked in the closed-cleft, activated conformation. Thus, UBP792 may be inhibiting by stabilizing an open GluN2-LBD cleft associated with channel inactivation or by stabilizing downstream closed channel conformations allosterically-coupled to the GluN2-LBD. These findings further expand the repertoire displayed by NMDAR NAMs thus expanding the opportunities for developing NMDAR modulators with the most appropriate selectivity and physiological actions for specific therapeutic indications.


Assuntos
Ácidos Carboxílicos , Naftalenos , Fármacos Neuroprotetores , Receptores de N-Metil-D-Aspartato , Animais , Regulação Alostérica , Sítios de Ligação , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Glicina , Naftalenos/química , Naftalenos/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oócitos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus
4.
Elife ; 102021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34693906

RESUMO

Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.


Assuntos
Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Animais , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Int J Neuropsychopharmacol ; 24(11): 907-919, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34363482

RESUMO

BACKGROUND: Enhancement of N-methyl-D-aspartate (NMDA) receptor function using glycine-site agonist D-cycloserine is known to facilitate fear extinction, providing a means to augment cognitive behavioral therapy in anxiety disorders. A novel class of glycine-site agonists has recently been identified, and we have found that the prototype, AICP, is more effective than D-cycloserine in modulating neuronal function. METHODS: Using novel glycine-site agonist AICP, local infusion studies, and genetic models, we elucidated the role of GluN2C-containing receptors in fear extinction. RESULTS: We tested the effect of intracerebroventricular injection of AICP on fear extinction and found a robust facilitation of fear extinction. This effect was dependent on GluN2C subunit, consistent with superagonist action of AICP at GluN2C-containing receptors. Local infusion studies in wild-type and GluN2C knockout mice suggested that AICP produces its effect via GluN2C-containing receptors in the basolateral amygdala (BLA). Furthermore, consistent with astrocytic expression of GluN2C subunit in the amygdala, we found that AICP did not facilitate fear extinction in mice with conditional deletion of obligatory GluN1 subunit from astrocytes. Importantly, chemogenetic activation of astrocytes in the basolateral amygdala facilitated fear extinction. Acutely, AICP was found to facilitate excitatory neurotransmission in the BLA via presynaptic GluN2C-dependent mechanism. Immunohistochemical studies suggest that AICP-mediated facilitation of fear extinction involves synaptic insertion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor GluA1 subunit. CONCLUSION: These results identify a unique role of astrocytic NMDA receptors composed of GluN2C subunit in extinction of conditioned fear memory and demonstrate that further development of recently identified superagonists of GluN2C-containing receptors may have utility for anxiety disorders.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Astrócitos/metabolismo , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Ciclosserina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Camundongos , Receptores de AMPA/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
6.
Mol Brain ; 14(1): 60, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766086

RESUMO

INTRODUCTION: N-Methyl-D-aspartate receptors (NMDARs) play a critical role in different forms of plasticity in the central nervous system. NMDARs are always assembled in tetrameric form, in which two GluN1 subunits and two GluN2 and/or GluN3 subunits combine together. Previous studies focused mainly on the hippocampus. The anterior cingulate cortex (ACC) is a key cortical region for sensory and emotional functions. NMDAR GluN2A and GluN2B subunits have been previously investigated, however much less is known about the GluN2C/2D subunits. RESULTS: In the present study, we found that the GluN2C/2D subunits are expressed in the pyramidal cells of ACC of adult mice. Application of a selective antagonist of GluN2C/2D, (2R*,3S*)-1-(9-bromophenanthrene-3-carbonyl) piperazine-2,3-dicarboxylic acid (UBP145), significantly reduced NMDAR-mediated currents, while synaptically evoked EPSCs were not affected. UBP145 affected neither the postsynaptic long-term potentiation (post-LTP) nor the presynaptic LTP (pre-LTP). Furthermore, the long-term depression (LTD) was also not affected by UBP145. Finally, both UBP145 decreased the frequency of the miniature EPSCs (mEPSCs) while the amplitude remained intact, suggesting that the GluN2C/2D may be involved in presynaptic regulation of spontaneous glutamate release. CONCLUSIONS: Our results provide direct evidence that the GluN2C/2D contributes to evoked NMDAR mediated currents and mEPSCs in the ACC, which may have significant physiological implications.


Assuntos
Giro do Cíngulo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologia , Animais , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética
7.
Neurobiol Dis ; 150: 105254, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421565

RESUMO

Globus pallidus externa (GPe) is a nucleus in the basal ganglia circuitry involved in the control of movement. Recent studies have demonstrated a critical role of GPe cell types in Parkinsonism. Specifically increasing the function of parvalbumin (PV) neurons in the GPe has been found to facilitate motor function in a mouse model of Parkinson's disease (PD). The knowledge of contribution of NMDA receptors to GPe function is limited. Here, we demonstrate that fast spiking neurons in the GPe express NMDA receptor currents sensitive to GluN2C/GluN2D-selective inhibitors and glycine site agonist with higher efficacy at GluN2C-containing receptors. Furthermore, using a novel reporter model, we demonstrate the expression of GluN2C subunits in PV neurons in the GPe which project to subthalamic nuclei. GluN2D subunit was also found to localize to PV neurons in GPe. Ablation of GluN2C subunit does not affect spontaneous firing of fast spiking neurons. In contrast, facilitating the function of GluN2C-containing receptors using glycine-site NMDA receptor agonists, D-cycloserine (DCS) or AICP, increased the spontaneous firing frequency of PV neurons in a GluN2C-dependent manner. Finally, we demonstrate that local infusion of DCS or AICP into the GPe improved motor function in a mouse model of PD. Together, these results demonstrate that GluN2C-containing receptors and potentially GluN2D-containing receptors in the GPe may serve as a therapeutic target for alleviating motor dysfunction in PD and related disorders.


Assuntos
Globo Pálido/metabolismo , Movimento/fisiologia , Neurônios/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ciclosserina/farmacologia , Modelos Animais de Doenças , Globo Pálido/citologia , Camundongos , Atividade Motora , Movimento/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Núcleo Subtalâmico
8.
J Neurosci Res ; 98(6): 1188-1197, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31820502

RESUMO

Over the past decade, many studies have focused on clarifying the roles of different N-methyl-d-aspartate (NMDA) receptor subunits in cerebral ischemia, hoping to develop subunit-selective drugs. Recently, more attention was given to studying the role of GluN2C in ischemia damage, which may lead to the development of new NMDA receptor antagonists for cerebral ischemia. Results showed that GluN2C inhibition or knockout can effectively alleviate the ischemic injury caused by middle cerebral artery occlusion and, contrarily, can aggravate the damage to hippocampal CA1 circuit caused by transient global cerebral ischemia. These results indicate the complicated roles of GluN2C in cerebral ischemia. In this minireview, we focus on these findings, describe the roles of GluN2C from different cell origins in ischemic damage, and explain the above inconsistent experimental results.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Humanos
9.
Neurosci Lett ; 715: 134674, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31809803

RESUMO

Medial vestibular nucleus (MVN) neurons are involved in the regulation of eye movements to endure the stability of the image during head movement, and play a critical role in plasticity of the vestibulo-ocular reflex (VOR) during the juvenile period. We have previously shown that the long-term depression (LTD) of synaptic transmission was induced by high frequency stimulation (HFS) and blocked by N-methyl-D-aspartate (NMDA) receptor antagonist D-APV at the vestibular afferent synapses of type-B MVN neurons. In the present study, we used whole-cell patch-clamp recordings in vitro to investigate the subunit composition of these NMDA receptors in the induction of LTD in MVN slices from postnatal 13-16 day rats. We found that LTD induced in type-B neurons of the rat MVN with HFS was blocked by Ro 25-6981, a specific antagonist for GluN2B-containing NMDA receptors. Moreover, the other selective GluN2B-containing NMDA receptor antagonist (ifenprodil) also prevented the induction of LTD. However, bath application of the GluN2A-containing NMDA receptor antagonists (Zn2+ and TCN 201) had no influence on the induction of LTD. Similar results were obtained by exogenously applied two GluN2C/GluN2D-preferring NMDA receptor antagonists (PPDA and UBP 141). Furthermore, presynaptic NMDA receptor subunits are not necessary for vestibular LTD. These results suggest that the induction of LTD by HFS in vestibular afferent synapses of type-B MVN neurons requires postsynaptic GluN2B-containing NMDA receptors, but not GluN2A-containing NMDA receptors or GluN2C/GluN2D-containing NMDA receptors.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Compostos de Diazônio/farmacologia , Feminino , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Fenóis/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores Pré-Sinápticos/fisiologia , Sulfonamidas/farmacologia
10.
Neurochem Res ; 44(1): 61-77, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29651654

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the brain with high concentrations in the telencephalon where they modulate synaptic plasticity, working memory, and other functions. While the actions of the predominate GluN2 NMDAR subunits, GluN2A and GluN2B are relatively well understood, the function of GluN2C and GluN2D subunits in the telencephalon is largely unknown. To better understand the possible role of GluN2C subunits, we used fluorescence in situ hybridization (FISH) together with multiple cell markers to define the distribution and type of cells expressing GluN2C mRNA. Using a GluN2C-KO mouse as a negative control, GluN2C mRNA expression was only found in non-neuronal cells (NeuN-negative cells) in the hippocampus, striatum, amygdala, and cerebral cortex. For these regions, a significant fraction of GFAP-positive cells also expressed GluN2C mRNA. Overall, for the telencephalon, the globus pallidus and olfactory bulb were the only regions where GluN2C was expressed in neurons. In contrast to GluN2C, GluN2D subunit mRNA colocalized with neuronal and not astrocyte markers or GluN2C mRNA in the telencephalon (except for the globus pallidus). GluN2C mRNA did, however, colocalize with GluN2D in the thalamus where neuronal GluN2C expression is found. These findings strongly suggest that GluN2C has a very distinct function in the telencephalon compared to its role in other brain regions and compared to other GluN2-containing NMDARs. NMDARs containing GluN2C may have a specific role in regulating L-glutamate or D-serine release from astrocytes in response to L-glutamate spillover from synaptic activity.


Assuntos
Interneurônios/metabolismo , Neuroglia/metabolismo , RNA Mensageiro/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Telencéfalo/metabolismo , Animais , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , RNA Mensageiro/genética , Receptores de N-Metil-D-Aspartato/genética
11.
Biochem Biophys Res Commun ; 506(3): 648-652, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30454701

RESUMO

Homocysteine (HCY) induced neurotoxicity largely depends on interaction of this endogenous amino acid with glutamate NMDA receptors (NMDARs). This receptor type is composed by GluN1 and different GluN2 (A, B, C or D) subunits. However, the receptor activity of HCY in brain regions which differ in relative contribution of GluN2 subunits was not tested so far. In the current study, we explored the action of HCY on cerebellar neurons which natively express GluN2C and GluN2D subunits of NMDARs and compared this with the action of HCY on cortical neurons which are mainly composed by GluN2A and GluN2B subunits. To validate obtained results, we also studied the responses to HCY in recombinant GluN1/2C and GluN1/2D NMDARs expressed in HEK293T cells. Responses to HCY were compared to membrane currents evoked by glutamate or by the specific agonist NMDA. First, we found that on HEK cells expressing GluN1/2C or GluN1/2D NMDARs, HCY was full agonist producing membrane currents similar in amplitude to currents induced by glutamate. The EC50 values for these particular receptor subtype activation were 80 µM and 31 µM, respectively. Then, we found that HCY similarly to NMDA, evoked large slightly desensitizing membrane currents in native NMDARs of cerebellar and cortical neurons. In cortical neurons, the ratio of the respective currents (IHCY/INMDA) was 0.16 and did not significantly change during in vitro maturation. In sharp contrast, in cerebellar neurons, the ratio of currents evoked by HCY and NMDA was dramatically increased from 0.31 to 0.72 from 7 to 21 day in culture. We show that least 75% of HCY-induced currents in cerebellum were mediated by GluN2C- or GluN2D-containing NMDARs. Thus, our data revealed a large population of cerebellar NMDA receptors highly sensitive to HCY which suggest potential vulnerability of this brain region to pathological conditions associated with enhanced levels of this neurotoxic amino acid.


Assuntos
Cerebelo/citologia , Homocisteína/farmacologia , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas
12.
J Exp Neurosci ; 12: 1179069518810423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479490

RESUMO

Triheteromeric N-methyl-D-aspartate receptors (NMDARs) are assemblies of two different types of GluN2 subunits that endow receptors with properties distinct from their diheteromeric counterparts. Previous studies show an abundance of triheteromeric NMDARs across the central nervous system (CNS), making them an important receptor population to investigate and potential drug target. A recent study by Bhattacharya et al. (1) demonstrated the prevalence of GluN1/GluN2A/GluN2C triheteromeric NMDARs in cerebellar granule cells (CGCs), (2) suggested that GluN2C subunits seldom express as diheteromers, (3) suggested that GluN2A subunits are the preferred partners for GluN2C to functionally express at the cell surface, and (4) revealed unique single-channel properties of these triheteromeric assemblies, which may enable these cells to perform unique tasks. Taken together, this work demonstrates the physiological existence of GluN1/GluN2A/GluN2C receptors in the CGCs.

13.
Neuroscience ; 380: 49-62, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29559384

RESUMO

Hypofunction of NMDA receptors in parvalbumin (PV)-positive interneurons has been proposed as a potential mechanism for cortical abnormalities and symptoms in schizophrenia. GluN2C-containing receptors have been linked to this hypothesis due to the higher affinity of psychotomimetic doses of ketamine for GluN1/2C receptors. However, the precise cell-type expression of GluN2C subunit remains unknown. We describe the expression of the GluN2C subunit using a novel EGFP reporter model. We observed EGFP(GluN2C) localization in PV-positive neurons in the nucleus reticularis of the thalamus, globus pallidus externa and interna, ventral pallidum and substantia nigra. In contrast, EGFP(GluN2C)-expressing cells did not co-localize with PV-positive neurons in the cortex, striatum, hippocampus or amygdala. Instead, EGFP(GluN2C) expression in these regions co-localized with an astrocytic marker. We confirmed functional expression of GluN2C-containing receptors in the PV-neurons in substantia nigra and cortical astrocytes using electrophysiology. GluN2C was found to be enriched in several first-order and higher order thalamic nuclei. Interestingly, we found that a previous GluN2C ß-gal reporter model excluded expression from PV-neurons and certain thalamic nuclei but exhibited expression in the retrosplenial cortex. GluN2C's unique distribution in neuronal and non-neuronal cells in a brain region-specific manner raises interesting questions regarding the role of GluN2C-containing receptors in the central nervous system.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Técnicas de Introdução de Genes/métodos , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/análise
14.
ACS Chem Neurosci ; 9(2): 306-319, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29043770

RESUMO

N-Methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate excitatory synaptic transmission and have been implicated in numerous neurological disorders. NMDARs typically comprise two GluN1 and two GluN2 subunits. The four GluN2 subtypes (GluN2A-GluN2D) have distinct functional properties and gene expression patterns, which contribute to diverse functional roles for NMDARs in the brain. Here, we present a series of GluN2C/2D-selective negative allosteric modulators built around a N-aryl benzamide (NAB) core. The prototypical compound, NAB-14, is >800-fold selective for recombinant GluN2C/GluN2D over GluN2A/GluN2B in Xenopus oocytes and has an IC50 value of 580 nM at recombinant GluN2D-containing receptors expressed in mammalian cells. NAB-14 inhibits triheteromeric (GluN1/GluN2A/GluN2C) NMDARs with modestly reduced potency and efficacy compared to diheteromeric (GluN1/GluN2C/GluN2C) receptors. Site-directed mutagenesis suggests that structural determinants for NAB-14 inhibition reside in the GluN2D M1 transmembrane helix. NAB-14 inhibits GluN2D-mediated synaptic currents in rat subthalamic neurons and mouse hippocampal interneurons, but has no effect on synaptic transmission in hippocampal pyramidal neurons, which do not express GluN2C or GluN2D. This series possesses some druglike physical properties and modest brain permeability in rat and mouse. Altogether, this work identifies a new series of negative allosteric modulators that are valuable tools for studying GluN2C- and GluN2D-containing NMDAR function in brain circuits, and suggests that the series has the potential to be developed into therapies for selectively modulating brain circuits involving the GluN2C and GluN2D subunits.


Assuntos
Benzamidas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Regulação Alostérica , Animais , Benzamidas/química , Antagonistas de Aminoácidos Excitatórios/química , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Oócitos , Estrutura Secundária de Proteína , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos , Xenopus laevis
15.
Biochem Biophys Res Commun ; 495(1): 136-144, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101031

RESUMO

The N-methyl-D-aspartate receptor (NMDAR) ion channel plays a pivotal role in the pathology of ischemic stroke. The functional receptor consists of two GluN1 subunits (a-h) and two GluN2 subunits (A/B/C/D), the expression of which are spatially and temporally regulated in pathological and physiological conditions. While the roles of the GluN2A and GluN2B subunit in ischemic stroke have been well developed, the role of the GluN2C subunit in ischemia is not well understood. Following middle carotid artery occlusion (MCAO), GluN2C-/- male mice displayed similar volumes of infarct as wild-type (WT) mice. However, GluN2C-/- mice showed decreased cerebral edema and an enhanced rate of neurological recovery compared to WT mice. The ischemic penumbra of GluN2C-/- mice showed fewer cytoarchitectural deficits and decreased tauopathy relative to WT mice. These neuroprotective changes in GluN2C-/- mice also corresponded with decreased expression of Fyn kinase and decreased phosphorylation of GluN2B subunit at Tyr1336. Lastly, a GluN2C deficiency modified the NMDAR/pro-survival signaling axis, as shown by increased levels of nuclear CREB(P-Ser133). Thus, the GluN2C subunit enhances ischemic stroke pathology by promoting neuronal dysfunction in the penumbra region.


Assuntos
Infarto Encefálico/genética , Encéfalo/patologia , Deleção de Genes , Neuroproteção , Receptores de N-Metil-D-Aspartato/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Edema Encefálico/complicações , Edema Encefálico/genética , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Infarto Encefálico/complicações , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
J Mol Neurosci ; 64(2): 300-311, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29285738

RESUMO

Transient expression of different NMDA receptors (NMDARs) plays a role in development of the cerebellum. Whether similar processes undergo during neuronal differentiation in culture is not clearly understood. We studied NMDARs in cerebellar neurons in cultures of 7 and 21 days in vitro (DIV) using immunocytochemical and electrophysiological approaches. Whereas at 7 DIV, the vast majority of neurons were immunopositive for GluN2 subunits, further synaptoginesis was accompanied by the time-dependent loss of NMDARs. In contrast to GluN2B- and GluN2C-containing NMDARs, which at 7 DIV exhibited homogenous distribution in extrasynaptic regions, GluN2A-containing receptors were aggregated in spots both in cell bodies and dendrites. Double staining for GluN2A subunits and synaptophysin, a widely used marker for presynaptic terminals, revealed their co-localization in about 75% of dendrite GluN2A fluorescent spots, suggesting postsynaptic origin of GluN2A subunits. In agreement, diheteromeric GluN2A-containing NMDARs contributed to postsynaptic currents recorded in neurons throughout the timescale under study. Diheteromeric GluN2B-containing NMDARs escaped postsynaptic regions during differentiation. Finally, the developmental switch favored the expression of triheteromeric NMDARs assembled of 2 GluN1/1 GluN2B/1 GluN2C or GluN2D subunits in extrasynaptic regions. At 21 DIV, these receptors represented over 60% of the NMDAR population. Thus, cerebellar neurons in primary culture undergo transformations with respect to the expression of di- and triheteromeric NMDARs that should be taken into account when studying cellular aspects of their pharmacology and functions.


Assuntos
Neurogênese , Células de Purkinje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Potenciais da Membrana , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Células de Purkinje/citologia , Células de Purkinje/fisiologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Sinapses/fisiologia
17.
J Biol Chem ; 290(38): 23188-200, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26229101

RESUMO

The 14-3-3 family of proteins is widely distributed in the CNS where they are major regulators of essential neuronal functions. There are seven known mammalian 14-3-3 isoforms (ζ,, τ, ϵ, η, ß, and σ), which generally function as adaptor proteins. Previously, we have demonstrated that 14-3-3ϵ isoform dynamically regulates forward trafficking of GluN2C-containing NMDA receptors (NMDARs) in cerebellar granule neurons, that when expressed on the surface, promotes neuronal survival following NMDA-induced excitotoxicity. Here, we report 14-3-3 isoform-specific binding and functional regulation of GluN2C. In particular, we show that GluN2C C-terminal domain (CTD) binds to all 14-3-3 isoforms except 14-3-3σ, and binding is dependent on GluN2C serine 1096 phosphorylation. Co-expression of 14-3-3 (ζ and ϵ) and GluN1/GluN2C promotes the forward delivery of receptors to the cell surface. We further identify novel residues serine 145, tyrosine 178, and cysteine 189 on α-helices 6, 7, and 8, respectively, within ζ-isoform as part of the GluN2C binding motif and independent of the canonical peptide binding groove. Mutation of these conserved residues abolishes GluN2C binding and has no functional effect on GluN2C trafficking. Reciprocal mutation of alanine 145, histidine 180, and isoleucine 191 on 14-3-3σ isoform promotes GluN2C binding and surface expression. Moreover, inhibiting endogenous 14-3-3 using a high-affinity peptide inhibitor, difopein, greatly diminishes GluN2C surface expression. Together, these findings highlight the isoform-specific structural and functional differences within the 14-3-3 family of proteins, which determine GluN2C binding and its essential role in targeting the receptor to the cell surface to facilitate glutamatergic neurotransmission.


Assuntos
Proteínas 14-3-3/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas 14-3-3/genética , Substituição de Aminoácidos , Animais , Células HEK293 , Células HeLa , Humanos , Mutação de Sentido Incorreto , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica/fisiologia
18.
Brain Res ; 1595: 84-91, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25446446

RESUMO

Previous behavioral studies have demonstrated that presynaptic N-methyl-d-aspartate (NMDA) receptors expressed on vagal afferent terminals are involved in food intake and satiety. Therefore, using in vitro live cell calcium imaging of prelabeled rat hindbrain slices, we characterized which NMDA receptor GluN2 subunits may regulate vagal afferent activity. The nonselective NMDA receptor antagonist d,l-2-amino-5-phosphonopentanoic acid (d,l-AP5) significantly inhibited vagal terminal calcium influx, while the excitatory amino acid reuptake inhibitor d,l-threo-ß-benzyloxyaspartic acid (TBOA), significantly increased terminal calcium levels following pharmacological stimulation with ATP. Subunit-specific NMDA receptor antagonists and potentiators were used to identify which GluN2 subunits mediate the NMDA receptor response on the vagal afferent terminals. The GluN2B-selective antagonist, ifenprodil, selectively reduced vagal calcium influx with stimulation compared to the time control. The GluN2A-selective antagonist, 3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl] benzyl]benzenesulfonamide (TCN 201) produced smaller but not statistically significant effects. Furthermore, the GluN2A/B-selective potentiator (pregnenolone sulfate) and the GluN2C/D-selective potentiator [(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone; (CIQ)] enhanced vagal afferent calcium influx during stimulation. These data suggest that presynaptic NMDA receptors with GluN2B, GluN2C, and GluN2D subunits may predominantly control vagal afferent excitability in the nucleus of the solitary tract.


Assuntos
Vias Aferentes/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Núcleo Solitário/fisiologia , Nervo Vago/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Ácido Aspártico/farmacologia , Benzimidazóis/farmacologia , Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Piperidinas/farmacologia , Pregnenolona/farmacologia , Ratos , Ratos Long-Evans , Núcleo Solitário/efeitos dos fármacos , Sulfonamidas/farmacologia
19.
Br J Pharmacol ; 171(3): 799-809, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24236947

RESUMO

BACKGROUND AND PURPOSE: Despite ample evidence supporting the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia, progress in the development of effective therapeutics based on this hypothesis has been limited. Facilitation of NMDA receptor function by co-agonists (D-serine or glycine) only partially alleviates the symptoms in schizophrenia; other means to facilitate NMDA receptors are required. NMDA receptor sub-types differ in their subunit composition, with varied GluN2 subunits (GluN2A-GluN2D) imparting different physiological, biochemical and pharmacological properties. CIQ is a positive allosteric modulator that is selective for GluN2C/GluN2D-containing NMDA receptors (Mullasseril et al.). EXPERIMENTAL APPROACH: The effect of systemic administration of CIQ was tested on impairment in prepulse inhibition (PPI), hyperlocomotion and stereotypy induced by i.p. administration of MK-801 and methamphetamine. The effect of CIQ was also tested on MK-801-induced impairment in working memory in Y-maze spontaneous alternation test. KEY RESULTS: We found that systemic administration of CIQ (20 mg·kg⁻¹, i.p.) in mice reversed MK-801 (0.15 mg·kg⁻¹, i.p.)-induced, but not methamphetamine (3 mg·kg⁻¹, i.p.)-induced, deficit in PPI. MK-801 increased the startle amplitude to pulse alone, which was not reversed by CIQ. In contrast, methamphetamine reduced the startle amplitude to pulse alone, which was reversed by CIQ. CIQ also partially attenuated MK-801- and methamphetamine-induced hyperlocomotion and stereotyped behaviours. Additionally, CIQ reversed the MK-801-induced working memory deficit in spontaneous alternation in a Y-maze. CONCLUSION AND IMPLICATIONS: Together, these results suggest that facilitation of GluN2C/GluN2D-containing receptors may serve as an important therapeutic strategy for treating positive and cognitive symptoms in schizophrenia.


Assuntos
Modelos Animais de Doenças , Isoquinolinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Quinolinas/uso terapêutico , Receptores de N-Metil-D-Aspartato/agonistas , Esquizofrenia/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Maleato de Dizocilpina , Hipercinese/etiologia , Hipercinese/prevenção & controle , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/efeitos dos fármacos , Subunidades Proteicas/agonistas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA