Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.055
Filtrar
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 636-640, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39223030

RESUMO

Glycogen storage diseases (GSDs) are a group of autosomal recessive disorders of glucose metabolism.GSDs are caused by congenital deficiency of enzymes in glycogen synthesis or decomposition,which results in glycogen accumulation in organs.According to the types of enzyme deficiency,GSDs can be classified into more than ten types,among which GSD Ⅻ is a super-rare type of GSD.Two brothers with a 5-year age difference presented severe neonatal asphyxia,myasthenia,myocardial damage,anemia,and mental retardation,being GSD Ⅻ homozygous cases with neonatal onset.The results of gene detection showed that nucleotide and amino acid alterations (c.619G>A,p.E207K) of the ALDOA gene existed in the two brothers,being homozygous,and the genotypes in the parents were heterozygous.This article summarized the clinical features,diagnosis,and treatment of GSD Ⅻ,providing reference for exploring the etiology and treatment of severe asphyxia,myasthenia,anemia,and multiple organ damage in neonates after birth.


Assuntos
Doença de Depósito de Glicogênio , Humanos , Masculino , Recém-Nascido , Pré-Escolar , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/diagnóstico , Irmãos , Mutação
2.
Artigo em Inglês | MEDLINE | ID: mdl-39259163

RESUMO

The second meal phenomenon refers to the improvement in glucose tolerance seen following a second identical meal. We previously showed that 4 hours of morning hyperinsulinemia, but not hyperglycemia, enhanced hepatic glucose uptake (HGU) and glycogen storage during an afternoon hyperinsulinemic-hyperglycemic (HIHG) clamp. Our current aim was to determine if the duration or pattern of morning hyperinsulinemia is important for the afternoon response to a HIHG clamp. To determine this, we administered the same total amount of insulin either over 2h in the first (Ins2h-A) or second (Ins2h-B) half of the morning, or over the entire 4h (Ins4h) of the morning. In the 4h afternoon period, all three groups had 4x-basal insulin, 2x-basal glycemia, and portal glucose infusion to expose the liver to the primary postprandial regulators of hepatic glucose metabolism. During the afternoon clamp, there was a marked increase in HGU and hepatic glycogen synthesis in the Ins4h group compared to the Ins2h-A and Ins2h-B groups, despite matched hepatic glucose loads and total insulin infusion rates. Thus, the longer duration (Ins4h) of lower hyperinsulinemia in the morning seems to be the key to much greater liver glucose uptake during the afternoon clamp.

3.
Mol Genet Metab ; 143(1-2): 108573, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39243574

RESUMO

BACKGROUND: Cohort data on continuous glucose monitoring (CGM) metrics are scarce for liver glycogen storage diseases (GSDs) and idiopathic ketotic hypoglycemia (IKH). The aim of this study was to retrospectively describe CGM metrics for people with liver GSDs and IKH. PATIENTS AND METHODS: CGM metrics (descriptive, glycemic variation and glycemic control parameters) were calculated for 47 liver GSD and 14 IKH patients, categorized in cohorts by disease subtype, age and treatment status, and compared to published age-matched CGM metrics from healthy individuals. Glycemic control was assessed as time-in-range (TIR; ≥3.9 - ≤7.8 and ≥3.9 - ≤10.0 mmol/L), time-below-range (TBR; <3.0 mmol/L and ≥3.0 - ≤3.9 mmol/L), and time-above-range (TAR; >7.8 and >10.0 mmol/L). RESULTS: Despite all patients receiving dietary treatment, GSD cohorts displayed significantly different CGM metrics compared to healthy individuals. Decreased TIR together with increased TAR were noted in GSD I, GSD III, and GSD XI (Fanconi-Bickel syndrome) cohorts (all p < 0.05). In addition, all GSD I cohorts showed increased TBR (all p < 0.05). In GSD IV an increased TBR (p < 0.05) and decreased TAR were noted (p < 0.05). In GSD IX only increased TAR was observed (p < 0.05). IKH patient cohorts, both with and without treatment, presented CGM metrics similar to healthy individuals. CONCLUSION: Despite dietary treatment, most liver GSD cohorts do not achieve CGM metrics comparable to healthy individuals. International recommendations on the use of CGM and clinical targets for CGM metrics in liver GSD patients are warranted, both for patient care and clinical trials.

4.
Immunopharmacol Immunotoxicol ; : 1-10, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245870

RESUMO

Background: Isoorientin (ISO), a flavone C-glycoside, is a glycogen synthase kinase 3ß (GSK3ß) substrate-competitive inhibitor. ISO has potential in treatment of Alzheimer's disease (AD). An excessive activation of GSK3ß can lead to neuroinflammation causing neuronal damage. Microglia cells, as resident immune cells of the central nervous system, mediate neuroinflammation. Here, we studied the effects of ISO on microglial activation to alleviate neuroinflammation.Methods: Effects of ISO were observed upon the stimulation of mouse microglia BV2 or SIM-A9 cells by lipopolysaccharide (LPS). Lithium chloride (LiCl) was the positive control as a GSK3ß inhibitor. The release of TNF-α and NO were analyzed by ELISA and Griess assays, while expressions of COX-2, Iba-1, BDNF, GSK3ß, NF-κB p65, IκB, Nrf2 and HO-1 were detected by Western blotting. In the co-culture model of SIM-A9 cells and differentiated SH-SY5Y human neuroblastoma cells, effects of ISO on microglia-mediated neuronal damage were evaluated with the MTS assay.Results: ISO significantly inhibited the production of TNF-α (p < 0.01), NO (p < 0.001) and the expression of COX-2 (p < 0.01) and Iba-1 (p < 0.05) induced by LPS, and increased BDNF. The cell viability of SH-SY5Y was inhibited by LPS in the co-culture, which was prevented by ISO pretreatment. ISO increased the expression of p-GSK3ß (Ser9), IκB and HO-1 in the cytoplasm, decreased NF-κB p65 and increased Nrf2 in the nucleus compared with the LPS group.Conclusion: ISO attenuated the activation of microglia through regulating the GSK3ß, NF-κB and Nrf2/HO-1 signaling pathways to exert neuroprotection.

5.
Food Chem X ; 23: 101736, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253010

RESUMO

The severe eutrophication of the Baltic Sea requires mussel (Mytilus spp.) farming to remove nutrients, but farming in a low salinity environment results in smaller mussels that require value enhancement to be economically viable. This study evaluates the biomass valorisation of smaller Baltic mussels, focusing on the extraction of oil, protein and glycogen. It analyses the amino acid profiles, oil and fatty acid contents and glycogen levels of the mussels, as well as their prebiotic properties on beneficial gut bacteria. In addition, the study improves the extraction of bioactive compounds through enzymatic hydrolysis. Results indicate significant seasonal differences, with summer mussels having higher meat and lower ash content, and a rich content of essential fatty acids, particularly omega-3, and amino acids, underscoring the mussels' sustainability as a food source. The enzymatically treated biomass exhibited notable prebiotic activity, proposing health-promoting benefits. The study underscores the valorization of Baltic mussel biomass, highlighting its role in health, nutrition, and environmental sustainability.

6.
J Taibah Univ Med Sci ; 19(4): 856-866, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39253362

RESUMO

Objective: Oxidative stress develops because of a shift in the prooxidant-antioxidant balance toward the former, because of disturbances in redox signaling and control. Celecoxib (Cb), a selective COX-2 inhibitor, is a drug that effectively decreases pain and inflammation. However, Cb causes oxidative injury to hepatic tissues via enhanced lipid peroxidation, thus resulting in excessive production of reactive oxygen species. Consequently, frequent or long-term Cb use may lead to hepatic, renal, and other noticeable adverse effects. Lycopene (lyco), a potent antioxidant naturally occurring in pigmented fruits and vegetables, actively eradicates singlet oxygen and other free radicals, thereby protecting cells against destruction of the plasma membrane by free radicals. Methods: We hypothesized that lyco might protect rat liver cells against Cb-induced oxidative stress, thus reducing fatty infiltration and glycogen depletion. Rats were randomized into three groups (with ten rats each) receiving control (group A, saline only), Cb (group B, 50 mg/kg, orally), or Cb + lyco (group C, 50 mg/kg, orally) for 30 days. Subsequently, liver tissues were examined, and the average liver weight and histological changes in fat and glycogen content were determined. Results: Lyco mitigated hepatocyte damage in Cb-treated rats, reducing fat accumulation and glycogen loss, probably through its antioxidant properties. Concomitant lyco and Cb intake prevented hepatotoxic adverse effects due to oxidative injury, as well as non-alcoholic fatty liver disease (NAFLD), a key component of metabolic syndrome. Moreover, the binding orientation of lyco in the binding site of COX-2 enzyme revealed that the docked complex had noteworthy binding strength. Conclusion: In conclusion, our study revealed lyco's protective effects against Cb-induced hepatic damage by reducing fat and glycogen depletion.

7.
Nanotechnology ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265582

RESUMO

T lymphocyte therapies demonstrate significant promise in the treatment of cancer and infectious diseases. An efficient gene delivery system is essential for the safe and reliable introduction of exogenous genes, especially mRNA, into cells to achieve therapeutic purposes. Commercial transfection reagents are suitable for the transduction of plasmids to adherent cells, whereas they are ineffective for suspension cells such as T lymphocytes and for unstable mRNA. Moreover, the cytotoxicity of transfection reagents themselves constitutes an impediment to their application. The challenge of mRNA transduction to T lymphocytes with high efficiency is notably formidable. An innovative transfection strategy is urgently needed. In this study, we synthesized aminated glycogen (AGly) nanoparticles as gene vectors, encapsulating mRNA to facilitate the efficient transfection of T lymphocytes. Compared to commercial transfection reagent PEI, the AGly demonstrated favorable biocompatibility. The positive charge provided AGly with pH buffering ability and mRNA-binding capacity. AGly formed stable nanoparticles with mRNA, which were readily internalized by suspension cells and enhanced the cellular uptake of mRNA. In the T lymphocyte model cell lines (Jurkat cells and HuT 78 cells), AGly demonstrated superior transfection efficiency than that of PEI. Consequently, AGly can emerge as a viable mRNA vector for the efficient transfection of T lymphocytes whilst circumventing the issue of cytotoxicity. The AGly designed in this study provides a novel concept for the exploitation of transfection reagents and proposes a promising methodology for the proficient transfection of T lymphocytes which may significantly contribute to the treatment of cancer and other complex diseases.

8.
Acta Physiol (Oxf) ; : e14215, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263899

RESUMO

AIM: To investigate how delayed post-exercise carbohydrate intake affects muscle glycogen, metabolic- and mitochondrial-related molecular responses, and subsequent high-intensity interval exercise (HIIE) capacity. METHODS: In a double-blind cross-over design, nine recreationally active men performed HIIE (10 × 2-min cycling, ~94% W˙peak) in the fed state, on two occasions. During 0-3 h post-HIIE, participants drank either carbohydrates ("Immediate Carbohydrate" [IC], providing 2.4 g/kg) or water ("Delayed Carbohydrate" [DC]); total carbohydrate intake over 24 h post-HIIE was matched (~7 g/kg/d). Skeletal muscle (sampled pre-HIIE, post-HIIE, +3 h, +8 h, +24 h) was analyzed for whole-muscle glycogen and mRNA content, plus signaling proteins in cytoplasmic- and nuclear-enriched fractions. After 24 h, participants repeated the HIIE protocol until failure, to test subsequent HIIE capacity; blood lactate, heart rate, and ratings of perceived effort (RPE) were measured throughout. RESULTS: Muscle glycogen concentrations, and relative changes, were similar between conditions throughout (p > 0.05). Muscle glycogen was reduced from baseline (mean ± SD mmol/kg dm; IC: 409 ± 166; DC: 352 ± 76) at post-HIIE (IC: 253 ± 96; DC: 214 ± 82), +3 h (IC: 276 ± 62; DC: 269 ± 116) and + 8 h (IC: 321 ± 56; DC: 269 ± 116), returning to near-baseline by +24 h. Several genes (PGC-1ɑ, p53) and proteins (p-ACCSer79, p-P38 MAPKThr180/Tyr182) elicited typical exercise-induced changes irrespective of condition. Delaying carbohydrate intake reduced next-day HIIE capacity (5 ± 3 intervals) and increased RPE (~2 ratings), despite similar physiological responses between conditions. CONCLUSION: Molecular responses to HIIE (performed in the fed state) were not enhanced by delayed post-exercise carbohydrate intake. Our findings support immediate post-exercise refueling if the goal is to maximize next-day HIIE capacity and recovery time is ≤24 h.

9.
Animals (Basel) ; 14(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39272251

RESUMO

The experiment was conducted to investigate the effects of feeding rates on growth performance, liver glycolysis, gluconeogenesis, glycogen synthesis, and glycogen decomposition in juvenile largemouth bronze gudgeon (Coreius guichenoti). A total number of 600 fish were randomly distributed into 12 cylindrical plastic tanks with 50 fish per tank and triplicate tanks per treatment. Fish were fed with 2%, 3%, 4%, and 5% feeding rates (body weight per day) three times day-1 for 8 w. The results indicated that the feeding rates significantly increased the body weight, weight gain rate, and specific growth rate (p < 0.05), while showing no significant effects on the condition factor and survival rate (p > 0.05). The feed conversion ratio was significantly enhanced by the feeding rate (p < 0.05), although no significant differences were observed when the feeding rate exceeded 3% (p > 0.05). The plasma glucose levels in the 4% and 5% groups were significantly higher than those in the 2% and 3% groups. Compared with other groups, the 5% group significantly increased the crucial rate-limiting enzyme activities and mRNA levels of glycolysis (PFKL and PK) (p < 0.05), while showing no significant differences on enzyme activities (PC, PEPCK, and G6P) and mRNA (pepck and g6p) levels of gluconeogenesis (p > 0.05). In addition, the mRNA levels of hepatic glut2 and glut4 in the 5% group reached the highest levels (p < 0.05). When the feeding rate exceeded 3%, hepatic glycogen and lipid accumulation were significantly increased, leading to a fatty liver phenotype. Meanwhile, the mRNA level of liver glycogen synthetase (gysl) was significantly increased (p < 0.05), while no significant difference was observed in glycogen phosphorylase (pygl) (p > 0.05). In summary, under the conditions of this study, a feeding rate exceeding 3% significantly accelerated hepatic glycogen and lipid accumulation, which ultimately induced fatty liver formation.

10.
Nutrients ; 16(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275149

RESUMO

Recent studies suggest that lactate intake has a positive effect on glycogen recovery after exercise. However, it is important to verify the effect of lactate supplementation alone and the timing of glycogen recovery. Therefore, in this study, we aimed to examine the effect of lactate supplementation immediately after exercise on glycogen recovery in mice liver and skeletal muscle at 1, 3, and 5 h after exercise. Mice were randomly divided into the sedentary, exercise-only, lactate, and saline-treated groups. mRNA expression and activation of glycogen synthesis and lactate transport-related factors in the liver and skeletal muscle were assessed using real-time polymerase chain reaction. Skeletal muscle glycogen concentration showed an increasing trend in the lactate group compared with that in the control group at 3 and 5 h after post-supplementation. Additionally, exogenous lactate supplementation significantly increased the expression of core glycogen synthesis enzymes, lactate transporters, and pyruvate dehydrogenase E1 alpha 1 in the skeletal muscles. Conversely, glycogen synthesis, lactate transport, and glycogen oxidation to acetyl-CoA were not significantly affected in the liver by exogenous lactate supplementation. Overall, these results suggest that post-exercise lactate supplement enables glycogen synthesis and recovery in skeletal muscles.


Assuntos
Glicogênio , Ácido Láctico , Fígado , Condicionamento Físico Animal , Animais , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Condicionamento Físico Animal/fisiologia , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/metabolismo
11.
Neurotherapeutics ; : e00446, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277505

RESUMO

Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.

12.
Curr Res Physiol ; 7: 100131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282594

RESUMO

Cardiac glycogen-autophagy ('glycophagy') is disturbed in cardiometabolic pathologies. The physiological role of cardiac glycophagy is unclear. Exercise induces transient cardiac glycogen accumulation. Thus, this study experimentally examined glycophagy involvement during recovery from an exhaustive exercise protocol. Peak myocardial glycogen accumulation in mice was evident at 2 h post-exercise, preceded by transient activation of glycogen synthase. At 4 and 16 h post-exercise, glycogen degradation was associated with decreased STBD1 (glycophagy tagging protein) and increased GABARAPL1 (Atg8 protein), suggesting that glycophagy activity was increased. These findings provide the first evidence that glycophagy is involved in cardiac glycogen physiologic homeostasis post-exercise.

13.
Heliyon ; 10(17): e37178, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286063

RESUMO

Argemone mexicana L. is a medicinal plant, but its impact on Alzheimer's disease (AD) is right now undetermined. We intended to investigate the in-vitro anti-AD potential of leaves and flowers of A. mexicana methanol, ethanol, and ethyl extracts and to identify multi-modal anti-AD phytochemicals by computational approaches. Molecular docking of 196 phytochemicals identified three hit phytochemicals (protoberberine, protopine, and codeine) with higher binding affinity and multi-targeting ability toward AChE, BChE, BACE-1, and GSK-3ß. Further MM-GBSA assays confirmed the integrity of these phytochemicals as the hit phytochemicals. However, these phytochemicals demonstrated favorable pharmacokinetics (PK) and drugable properties having no toxicity. Molecular dynamics simulations confirmed the binding strength of the hit phytoconstituents in the active pockets of AChE, BChE, BACE-1, and GSK-3ß with multi-targeting inhibitory activities. All the extracts exhibited dose-dependent antioxidant and anti-cholinesterase activities supporting the in silico results in the context of oxidative stress and cholinergic pathways. Our results offer scientific validation of the anti-AD properties of Argemone mexicana L. and identified protoberberine, protopine, and codeine that could be used for the development of multi-modal inhibitors of AChE, BChE, BACE-1, and GSK-3ß to combat AD. Additional in vivo validation is recommended to ensure a thorough assessment in the present research.

14.
Aging Cell ; : e14336, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287420

RESUMO

Glycogen synthase kinase-3α/ß (GSK3α/ß) is a critical kinase for Tau hyperphosphorylation which contributes to neurodegeneration. Despite the termination of clinical trials for GSK3α/ß inhibitors in Alzheimer's disease (AD) treatment, there is a pressing need for novel therapeutic strategies targeting GSK3α/ß. Here, we identified the compound AS1842856 (AS), a specific forkhead box protein O1 (FOXO1) inhibitor, reduced intracellular GSK3α/ß content in a FOXO1-independent manner. Specifically, AS directly bound to GSK3α/ß, promoting its translocation to the multivesicular bodies (MVBs) and accelerating exocytosis, ultimately decreasing intracellular GSK3α/ß content. Expectedly, AS treatment effectively suppressed Tau hyperphosphorylation in cells exposed to okadaic acid or expressing the TauP301S mutant. Furthermore, AS was visualized to penetrate the blood-brain barrier (BBB) using an imaging mass microscope. Long-term treatment of AS enhanced cognitive function in P301S transgenic mice by mitigating Tau hyperphosphorylation through downregulation of GSK3α/ß expression in the brain. Altogether, AS represents a novel small-molecule GSK3α/ß inhibitor that facilitates GSK3α/ß exocytosis, holding promise as a therapeutic agent for GSK3α/ß hyperactivation-associated disorders.

15.
Proc Natl Acad Sci U S A ; 121(37): e2402817121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236246

RESUMO

Autophagy of glycogen (glycophagy) is crucial for the maintenance of cellular glucose homeostasis and physiology in mammals. STBD1 can serve as an autophagy receptor to mediate glycophagy by specifically recognizing glycogen and relevant key autophagic factors, but with poorly understood mechanisms. Here, we systematically characterize the interactions of STBD1 with glycogen and related saccharides, and determine the crystal structure of the STBD1 CBM20 domain with maltotetraose, uncovering a unique binding mode involving two different oligosaccharide-binding sites adopted by STBD1 CBM20 for recognizing glycogen. In addition, we demonstrate that the LC3-interacting region (LIR) motif of STBD1 can selectively bind to six mammalian ATG8 family members. We elucidate the detailed molecular mechanism underlying the selective interactions of STBD1 with ATG8 family proteins by solving the STBD1 LIR/GABARAPL1 complex structure. Importantly, our cell-based assays reveal that both the STBD1 LIR/GABARAPL1 interaction and the intact two oligosaccharide binding sites of STBD1 CBM20 are essential for the effective association of STBD1, GABARAPL1, and glycogen in cells. Finally, through mass spectrometry, biochemical, and structural modeling analyses, we unveil that STBD1 can directly bind to the Claw domain of RB1CC1 through its LIR, thereby recruiting the key autophagy initiation factor RB1CC1. In all, our findings provide mechanistic insights into the recognitions of glycogen, ATG8 family proteins, and RB1CC1 by STBD1 and shed light on the potential working mechanism of STBD1-mediated glycophagy.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Glicogênio , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/química , Sítios de Ligação , Cristalografia por Raios X , Glicogênio/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Ligação Proteica
16.
Eur J Haematol ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239903

RESUMO

OBJECTIVES: The role of glycogen synthase kinase (GSK)-3ß in adult T-cell leukemia (ATL) caused by human T-cell leukemia virus type 1 (HTLV-1) is paradoxical and enigmatic. Here, we investigated the role of GSK-3ß and its potential as a therapeutic target for ATL. METHODS: Cell proliferation/survival, cell cycle, apoptosis, and reactive oxygen species (ROS) generation were examined using the WST-8 assay, flow cytometry, and Hoechst 33342 staining, respectively. Expression of GSK-3ß and cell cycle/death-related proteins, and survival signals was analyzed using RT-PCR, immunofluorescence staining, and immunoblotting. RESULTS: HTLV-1-infected T-cell lines showed nuclear accumulation of GSK-3ß. GSK-3ß knockdown and its inhibition with 9-ING-41 and LY2090314 suppressed cell proliferation/survival. 9-ING-41 induced G2/M arrest by enhancing the expression of γH2AX, p53, p21, and p27, and suppressing the expression of CDK1, cyclin A/B, and c-Myc. It induced caspase-mediated apoptosis by decreasing the expression of Bcl-xL, Mcl-1, XIAP, c-IAP1/2, and survivin, and increasing the expression of Bak and Bax. 9-ING-41 also induced ferroptosis and necroptosis, promoted JNK phosphorylation, and suppressed IKKγ and JunB expression. It inhibited the phosphorylation of IκBα, Akt, and STAT3/5, induced ROS production, and reduced glycolysis-derived lactate levels. CONCLUSION: GSK-3ß functions as an oncogene in ATL and could be a potential therapeutic target.

17.
Cell Biochem Funct ; 42(7): e4111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228117

RESUMO

Diabetes mellitus (DM) and Alzheimer's disease (AD) rates are rising, mirroring the global trend of an aging population. Numerous epidemiological studies have shown that those with Type 2 diabetes (T2DM) have an increased risk of developing dementia. These degenerative and progressive diseases share some risk factors. To a large extent, the amyloid cascade is responsible for AD development. Neurofibrillary tangles induce neurodegeneration and brain atrophy; this chain reaction begins with hyperphosphorylation of tau proteins caused by progressive amyloid beta (Aß) accumulation. In addition to these processes, it seems that alterations in brain glucose metabolism and insulin signalling lead to cell death and reduced synaptic plasticity in AD, before the onset of symptoms, which may be years away. Due to the substantial evidence linking insulin resistance in the brain with AD, researchers have coined the name "Type 3 diabetes" to characterize the condition. We still know little about the processes involved, even though current animal models have helped illuminate the links between T2DM and AD. This brief overview discusses insulin and IGF-1 signalling disorders and the primary molecular pathways that may connect them. The presence of GSK-3ß in AD is intriguing. These proteins' association with T2DM and pancreatic ß-cell failure suggests they might be therapeutic targets for both disorders.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Animais , Transdução de Sinais , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo
18.
Carbohydr Polym ; 346: 122631, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245499

RESUMO

Glycogen is a glucose polymer that plays a crucial role in glucose homeostasis by functioning as a short-term energy storage reservoir in animals and bacteria. Abnormalities in its metabolism and structure can cause several problems, including diabetes, glycogen storage diseases (GSDs) and muscular disorders. Defects in the enzymes involved in glycogen synthesis or breakdown, resulting in either excessive accumulation or insufficient availability of glycogen in cells seem to account for the most common pathogenesis. This review discusses glycogen metabolism and structure, including molecular architecture, branching dynamics, and the role of associated components within the granules. The review also discusses GSD type XV and Lafora disease, illustrating the broader implications of aberrant glycogen metabolism and structure. These conditions also impart information on important regulatory mechanisms of glycogen, which hint at potential therapeutic targets. Knowledge gaps and potential future research directions are identified.


Assuntos
Doença de Depósito de Glicogênio , Glicogênio , Glicogênio/metabolismo , Glicogênio/química , Humanos , Animais , Doença de Depósito de Glicogênio/metabolismo , Doença de Lafora/metabolismo
19.
J Anim Sci Technol ; 66(4): 645-662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39165738

RESUMO

Climate change, driven by the natural process of global warming, is a worldwide issue of significant concern because of its adverse effects on livestock output. The increasing trend of environmental temperature surging has drastically affected meat production and meat product quality, hence result in economic losses for the worldwide livestock business. Due to the increasing greenhouse gas emissions, the situation would get prolonged, and heat exposure-related stress is expected to worsen. Heat exposure causes metabolic and physiological disruptions in livestock. Ruminants and monogastric animals are very sensitive to heat stress due to their rate of metabolism, development, and higher production levels. Before slaughter, intense hot weather triggers muscle glycogen breakdown, producing pale, mushy, and exudative meat with less water-holding capacity. Animals exposed to prolonged high temperatures experience a decrease in their muscle glycogen reserves, producing dry, dark, and complex meat with elevated final pH and increased water-holding capacity. Furthermore, heat stress also causes oxidative stresses, especially secondary metabolites from lipid oxidation, severely affects the functionality of proteins, oxidation of proteins, decreasing shelf life, and food safety by promoting exfoliation and bacterial growth. Addressing the heat-related issues to retain the sustainability of the meat sector is an essential task that deserves an inclusive and comprehensive approach. Considering the intensity of the heat stress effects, this review has been designed primarily to examine the consequences of hot environment temperatures and related stresses on the quality and safety of meat and secondarily focus on cutting edge technology to reduce or alleviate the situational impact.

20.
NMR Biomed ; : e5241, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166302

RESUMO

This work aims to develop and implement a pulse-acquire sequence for three-dimensional (3D) single-voxel localized 13C MRS in humans at 7 T, in conjunction with bilevel broadband 1H decoupling, and to test its feasibility in vitro and in vivo in human calf muscle with emphasis on the detection of glycogen C1-C6. A localization scheme suitable for measuring fast-relaxing 13C signals in humans at 7 T was developed and implemented using the outer volume suppression (OVS) and one-dimensional image selected in vivo spectroscopy (ISIS-1D) schemes, similar to that which was previously reported in humans at 4 T. The 3D 13C localization scheme was followed by uniform 13C adiabatic excitation, all complemented with an option for bilevel broadband 1H decoupling to improve both 13C sensitivity and spectral resolution at 7 T. The performance of the pulse-acquire sequence was investigated in vitro on phantoms and in vivo in the human calf muscle of three healthy volunteers, while measuring glycogen C1-C6. In addition, T1 and T2 of glycogen C1-C6 were measured in vitro at 7 T, as well as T1 of glycogen C1 in vivo. The glycerol C2 and C1,3 lipid resonances were efficiently suppressed in vitro at 7 T using the OVS and ISIS-1D schemes, allowing distinct detection of glycogen C2-C6. While some glycerol remained in calf muscle in vivo, the intense lipid at 130 ppm was efficiently suppressed. The 13C sensitivity and spectral resolution of glycogen C1-C6 in vitro and glycogen C1 in vivo were improved at 7 T using bilevel broadband 1H decoupling. The T1 and T2 of glycogen C1-C6 in vitro at 7 T were consistent compared with those at 8.5 T, while the T1 of glycogen C1 in vivo at 7 T resulted similar to that in vitro. Localized 13C MRS is feasible in human calf muscle in vivo at 7 T, and this will allow further extension of this method for 13C MRS measurements such as in the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA