Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.332
Filtrar
1.
Appl Environ Microbiol ; : e0077924, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315794

RESUMO

6-Gingerol is a major phenolic compound within ginger (Zingiber officinale), often used in healthcare; however, its lower bioavailability is partly due to its poor solubility. Four bacterial glycosyltransferases (GTs) were tested to glycosylate 6-gingerol into soluble gingerol glucosides. BsUGT489 was a suitable GT to biotransform 6-gingerol into five significant products, which could be identified via nucleic magnetic resonance and mass spectrometry as 6-gingerol-4',5-O-ß-diglucoside (1), 6-gingerol-4'-O-ß-glucoside (2), 6-gingerol-5-O-ß-glucoside (3), 6-shogaol-4'-O-ß-glucoside (4), and 6-shogaol (5). The enzyme kinetics of BsUGT489 showed substrate inhibition toward 6-gingerol for producing two glucosides. The kinetic parameters were determined as KM (110 µM), kcat (862 min-1), and KI (571 µM) for the production of 6-gingerol-4'-O-ß-glucoside (2) and KM (104 µM), kcat (889 min-1), and KI (545 µM) for the production of 6-gingerol-5-O-ß-glucoside (3). The aqueous solubility of the three 6-gingerol glucosides, compound (1) to (3), was greatly improved. However, 6-shogaol-4'-O-ß-glucoside (4) was found to be a product biotransformed from 6-shogaol (5). This study first confirmed that the glucose moiety at the C-5 position of both 6-gingerol-4',5-O-ß-diglucoside (1) and 6-gingerol-5-O-ß-glucoside (3) caused spontaneous deglucosylation through ß-elimination to form 6-shogaol-4'-O-ß-glucoside (4) and 6-shogaol (5), respectively. Moreover, the GTs could glycosylate 6-shogaol to form 6-shogaol-4'-O-ß-glucoside (4). The assays showed 6-shogaol-4'-O-ß-glucoside (4) had higher anti-inflammatory activity (IC50 value of 10.3 ± 0.2 µM) than 6-gingerol. The 6-gingerol-5-O-ß-glucoside (3) possessed 346-fold higher solubility than 6-shogaol, in which the highly soluble glucoside is a potential prodrug of 6-shogaol via spontaneous deglucosylation. This unusual deglucosylation plays a vital role in influencing the anti-inflammatory activity. IMPORTANCE: Both 6-gingerols and 6-shogaol possess multiple bioactivities. However, their poor solubility limits their application. The present study used bacterial GTs to catalyze the glycosylation of 6-gingerol, and the resulting gingerol glycosides were found to be new compounds with improved solubility and anti-inflammatory activity. In addition, two of the 6-gingerol glucosides were found to undergo spontaneous deglucosylation to form 6-shogaol or 6-shogaol glucosides. The unique spontaneous deglucosylation property of the new 6-gingerol glucosides makes them a good candidate for the prodrug of 6-shogaol.

2.
J Biol Chem ; : 107801, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307307

RESUMO

A dynamic proteome is required for cellular adaption to changing environments including levels of O2, and the SKP1/CULLIN-1/F-box protein/RBX1 (SCF) family of E3 ubiquitin ligases contributes importantly to proteasome-mediated degradation. We examine, in the apicomplexan parasite Toxoplasma gondii, the influence on the interactome of SKP1 by its novel glycan attached to a hydroxyproline generated by PHYa, the likely ortholog of the HIFα PHD2 oxygen-sensor of human host cells. Strikingly, the representation of several putative F-box proteins (FBPs) is substantially reduced in PHYaΔ parasites grown in fibroblasts. One, FBXO13, is a predicted lysyl hydroxylase related to the human JmjD6 oncogene except for its F-box domain. The abundance of FBXO13, epitope-tagged at its genetic locus, was reduced in PHYaΔ parasites thus explaining its diminished presence in the SKP1 interactome. A similar effect was observed for FBXO14, a cytoplasmic protein of unknown function that may have co-evolved with PHYa in apicomplexans. Similar findings in glycosylation-mutant cells, rescue by proteasomal inhibitors, and unchanged transcript levels, suggested the involvement of the SCF in their degradation. The effect was selective, because FBXO1 was not affected by loss of PHYa. These findings are physiologically significant because the effects were phenocopied in parasites reared at 0.5% O2. Modest impact on steady-state SKP1 modification levels suggests that effects are mediated during a lag phase in hydroxylation of nascent SKP1. The dependence of FBP abundance on O2-dependent SKP1 modification likely contributes to the reduced virulence of PHYaΔ parasites owing to impaired ability to sense O2 as an environmental signal.

3.
Transl Oncol ; 49: 102093, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217850

RESUMO

BACKGROUND: This study aims to identify key glycosyltransferases (GTs) in colorectal cancer (CRC) and establish a robust prognostic signature derived from GTs. METHODS: Utilizing the AUCell, UCell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, we redefined genes related to GTs in CRC at the single-cell RNA level. To improve risk model accuracy, univariate Cox and lasso regression were employed to discover a more clinically subset of GTs in CRC. Subsequently, the efficacy of seven machine learning algorithms for CRC prognosis was assessed, focusing on survival outcomes through nested cross-validation. The model was then validated across four independent external cohorts, exploring variations in the tumor microenvironment (TME), response to immunotherapy, mutational profiles, and pathways of each risk group. Importantly, we identified potential therapeutic agents targeting patients categorized into the high-GARS group. RESULTS: In our research, we classified CRC patients into distinct subgroups, each exhibiting variations in prognosis, clinical characteristics, pathway enrichments, immune infiltration, and immune checkpoint genes expression. Additionally, we established a Glycosyltransferase-Associated Risk Signature (GARS) based on machine learning. GARS surpasses traditional clinicopathological features in both prognostic power and survival prediction accuracy, and it correlates with higher malignancy levels, providing valuable insights into CRC patients. Furthermore, we explored the association between the risk score and the efficacy of immunotherapy. CONCLUSION: A prognostic model based on GTs was developed to forecast the response to immunotherapy, offering a novel approach to CRC management.

4.
Transpl Immunol ; 87: 102114, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243908

RESUMO

BACKGROUND: Glycosylation is a complex and fundamental metabolic biosynthetic process orchestrated by multiple glycosyltransferases (GT) and glycosidases enzymes. Functions of GT have been extensively examined in multiple human diseases. Our study investigated the potential role of GT genes in T-cell mediated rejection (TCMR) and possible prediction of graft loss of kidney transplantation. METHODS: We downloaded the microarray datasets and GT genes from the GEO and the HUGO Gene Nomenclature Committee (HGNC) databases, respectively. Differentially expressed GT genes (DE-GTGs) were obtained by differential expression and Venn analysis. A TCMR diagnostic model was developed based on the hub DE-GTGs using LASSO regression and XGboost machine learning algorithms. In addition, a predictive model for graft survival was constructed by univariate Cox and LASSO Cox regression analysis. RESULTS: We have obtained 15 DE-GTGs. Both GO and KEGG analyses showed that the DE-GTGs were mainly involved in the glycoprotein biosynthetic process. The TCMR diagnostic model exhibited high diagnostic potential with generally highly correlated accuracies [aera under the curve (AUC) of 0.83]. The immune characteristics analysis revealed that higher levels of immune cell infiltration and immune responses were observed in the high-risk group than in the low-risk group. In particular, the Kaplan-Meier survival analysis revealed that renal grafts in the high-risk group have poor prognostic outcomes than the low-risk group. The predictive AUC values of 1-, 2- and 3-year graft survival were 0.76, 0.81, and 0.70, respectively. CONCLUSION: Our results indicated that GT genes could be used for diagnosis of TCMR and prediction of graft loss in kidney transplantation. These results provide new perspectives and tools for diagnosing, treating and predicting kidney transplant-related diseases.

5.
Acta Pharm Sin B ; 14(8): 3746-3759, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39220864

RESUMO

Glycosylation is an important post-modification reaction in plant secondary metabolism, and contributes to structural diversity of bioactive natural products. In plants, glycosylation is usually catalyzed by UDP-glycosyltransferases. Flavonoid 2'-O-glycosides are rare glycosides. However, no UGTs have been reported, thus far, to specifically catalyze 2'-O-glycosylation of flavonoids. In this work, UGT71AP2 was identified from the medicinal plant Scutellaria baicalensis as the first flavonoid 2'-O-glycosyltransferase. It could preferentially transfer a glycosyl moiety to 2'-hydroxy of at least nine flavonoids to yield six new compounds. Some of the 2'-O-glycosides showed noticeable inhibitory activities against cyclooxygenase 2. The crystal structure of UGT71AP2 (2.15 Å) was solved, and mechanisms of its regio-selectivity was interpreted by pK a calculations, molecular docking, MD simulation, MM/GBSA binding free energy, QM/MM, and hydrogen‒deuterium exchange mass spectrometry analysis. Through structure-guided rational design, we obtained the L138T/V179D/M180T mutant with remarkably enhanced regio-selectivity (the ratio of 7-O-glycosylation byproducts decreased from 48% to 4%) and catalytic efficiency of 2'-O-glycosylation (k cat/K m, 0.23 L/(s·µmol), 12-fold higher than the native). Moreover, UGT71AP2 also possesses moderate UDP-dependent de-glycosylation activity, and is a dual function glycosyltransferase. This work provides an efficient biocatalyst and sets a good example for protein engineering to optimize enzyme catalytic features through rational design.

6.
Carbohydr Polym ; 345: 122563, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227102

RESUMO

γ-Cyclodextrin (γ-CD) is an attractive material among the natural cyclodextrins owing to its excellent properties. γ-CD is primarily produced from starch by γ-cyclodextrin glycosyltransferase (γ-CGTase) in a controlled system. However, difficulty in separation and low conversion rate leads to high production costs for γ-CD. In this study, γ-CGTase from Bacillus sp. G-825-6 STB17 was used in γ-CD production from cassava starch. With the introduction of sodium tetraphenylborate (NaBPh4), the total conversion rate was promoted from an initial 18.07 % to 50.49 % and the γ-CD ratio reached 78.81 % with a yield of 39.79 g/L. Furthermore, the mechanism was conducted via the determination of binding constant, which indicated that γ-CD exhibited much stronger binding strength with NaBPh4 than ß-CD. The reformation of water molecules and the chaotropic effect might be the main driving forces for the interaction. Additionally, the conformations of CD complexes were depicted by NMR and molecular docking. The results further verified different binding patterns between CDs and tetraphenylborate ions, which might be the primary reason for the specific binding. This system not only guides γ-CD production with an efficient and easy-to-remove production aid but also offers a new perspective on the selection of complexing agents in CD production.


Assuntos
Bacillus , Boratos , Glucosiltransferases , Simulação de Acoplamento Molecular , gama-Ciclodextrinas , gama-Ciclodextrinas/química , gama-Ciclodextrinas/metabolismo , Bacillus/enzimologia , Boratos/química , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Amido/química , Amido/metabolismo , Manihot/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-39232210

RESUMO

Cellular auxin (indole-3-acetic acid, IAA) levels are coordinately regulated by IAA biosynthesis and inactivation. IAA is synthesized through sequential reactions by two enzymes, TAA1 and YUCCA, in a linear indole-3-pyruvic acid (IPA) pathway. TAA1 converts tryptophan to IPA, and YUCCA catalyzes the oxidative decarboxylation of IPA into IAA. Arabidopsis UDP-glycosyltransferase UGT76F2 (At3g55710) was previously reported to catalyze the glycosylation of IPA and consequently modulate IAA levels. We carefully analyzed the physiological roles of UGT76F2 and its close homolog UGT76F1 (At3g55700) in IAA homeostasis. We generated two independent ugt76f1 ugt76f2 double null Arabidopsis mutants (ugt76f1f2) with a 2.7 kb deletion, along with two independent ugt76f2 single null mutants by CRISPR/Cas9 gene editing technology. Surprisingly, these null mutants exhibited indistinguishable phenotypes from the wild-type seedlings under our laboratory conditions. Our results indicate that UGT76F1 and UGT76F2 do not play important roles in regulating IAA biosynthesis via the IPA glycosylation.

8.
Sci Rep ; 14(1): 21330, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266584

RESUMO

A significant consequence of climate change is the rising incidence of wildfires. When wildfires occur close to wine grape (Vitis vinifera) production areas, smoke-derived volatile phenolic compounds can be taken up by the grape berries, negatively affecting the flavor and aroma profile of the resulting wine and compromising the production value of entire vineyards. Evidence for the permeation of smoke-associated compounds into grape berries has been provided through metabolomics; however, the basis for grapevines' response to smoke at the gene expression level has not been investigated in detail. To address this knowledge gap, we employed time-course RNA sequencing to observe gene expression-level changes in grape berries in response to smoke exposure. Significant increases in gene expression (and enrichment of gene ontologies) associated with detoxification of reactive compounds, maintenance of redox homeostasis, and cell wall fortification were observed in response to smoke. These findings suggest that the accumulation of volatile phenols from smoke exposure activates mechanisms that render smoke-derived compounds less reactive while simultaneously fortifying intracellular defense mechanisms. The results of this work lend a better understanding of the molecular basis for grapevines' response to smoke and provide insight into the origins of smoke-taint-associated flavor and aroma attributes in wine produced from smoke-exposed grapes.


Assuntos
Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fumaça , Vitis , Vitis/genética , Vitis/metabolismo , Frutas/metabolismo , Frutas/genética , Fumaça/efeitos adversos , Transcriptoma , Compostos Orgânicos Voláteis/metabolismo , Incêndios Florestais , Fenóis/metabolismo , Inativação Metabólica/genética
9.
J Agric Food Chem ; 72(37): 20557-20567, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39250657

RESUMO

Nucleoside disaccharides are essential glycosides that naturally occur in specific living organisms. This study developed an enhanced UDP-glucose regeneration system to facilitate the in vitro multienzyme synthesis of nucleoside disaccharides by integrating it with nucleoside-specific glycosyltransferases. The system utilizes maltodextrin and polyphosphate as cost-effective substrates for UDP-glucose supply, catalyzed by α-glucan phosphorylase (αGP) and UDP-glucose pyrophosphorylase (UGP). To address the low activity of known polyphosphate kinases (PPKs) in the UDP phosphorylation reaction, a sequence-driven screening identified RhPPK with high activity against UDP (>1000 U/mg). Computational design further led to the creation of a double mutant with a 2566-fold increase in thermostability at 50 °C. The enhanced UDP-glucose regeneration system increased the production rate of nucleoside disaccharide synthesis by 25-fold. In addition, our UDP-glucose regeneration system is expected to be applied to other glycosyl transfer reactions.


Assuntos
Glicosiltransferases , Fosfotransferases (Aceptor do Grupo Fosfato) , Uridina Difosfato Glucose , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/química , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Dissacarídeos/metabolismo , Dissacarídeos/química , Escherichia coli/genética , Escherichia coli/metabolismo
10.
Biochim Biophys Acta Gen Subj ; 1868(11): 130709, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233219

RESUMO

BACKGROUND: The ß1,6-GlcNAc branch in N-glycans, produced by a glycosyltransferase N-acetylglucosaminyltransferase V (GnT-V or MGAT5), is associated with cancer and autoimmune diseases. SCOPE: Here, we summarize the structure and activity regulation of GnT-V. We also describe the roles of the ß1,6-GlcNAc branch on glycoproteins in cells and the phenotypes of Mgat5-deficient mice, focusing on cancer and the immune system. MAJOR CONCLUSIONS: GnT-V has a unique structure for substrate recognition, and its activity and function are regulated by shedding. The glycans produced by GnT-V play pivotal roles in the differentiation of neural cells, cancer malignancy and immunotherapy, and the development of autoimmune diseases by regulating the functions and cell surface residency of glycoproteins. GENERAL SIGNIFICANCE: Controlling the expression or activity of GnT-V could be a therapeutic option against cancer and autoimmune diseases. Future work should clarify how GnT-V selectively modifies the specific glycoproteins or N-glycosylation sites in vivo.

11.
Plant Physiol Biochem ; 215: 109052, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163652

RESUMO

Cellulose and hemicellulose are the major structural ß-glycan polysaccharides in cell walls of land plants. They are characterized by a backbone of ß-(1,3)- and/or ß-(1,4)-linked sugars such as glucose, mannose, or xylose. The backbones of these polymers are produced by processive glycosyltransferases (GTs) called synthases having multiple transmembrane domains anchoring them to the membrane. Thus, they are among the most difficult membrane proteins to test in vitro and to purify. Recently, we developed an in vitro GT-array (i-GTray) platform and showed that non-processive type II membrane GTs could be produced via cell-free system in a soluble and active form and tested in this platform. To determine whether i-GT-ray platform is adequate for the production and testing of ß-glycan synthases, we tested five synthases involved in cellulose, xyloglucan, (gluco)mannan, and ß-(1,3)(1,4)-mixed-linkage glucan synthesis. Our results revealed unsuspected features of these enzymes. For example, all these synthases could be produced in a soluble and active form and are active in the absence of detergent or membrane lipids, and none of them required a primer for initiation of synthesis. All synthases produced ethanol-insoluble products that were susceptible to the appropriate hydrolases (i.e., cellulase, lichenase, mannanase). Using this platform, we showed that AtCslC4 and AtXXT1 interact directly to form an active xyloglucan synthase that produced xylosylated cello-oligosaccharides (up to three xylosyl residues) when supplied with UDP-Glc and UDP-Xyl. i-GTray platform represents a simple and powerful functional genomics tool for discovery of new insights of synthase activities and can be adapted to other enzymes.


Assuntos
Glicosiltransferases , Polissacarídeos , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Celulose/metabolismo , Glucanos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo
12.
Biochem Biophys Res Commun ; 736: 150486, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39111055

RESUMO

Human α1,4-galactosyltransferase (A4galt), a Golgi apparatus-resident GT, synthesizes Gb3 glycosphingolipid (GSL) and P1 glycotope on glycoproteins (GPs), which are receptors for Shiga toxin types 1 and 2. Despite the significant role of A4galt in glycosylation processes, the molecular mechanisms underlying its varied acceptor specificities remain poorly understood. Here, we attempted to elucidate A4galt specificity towards GSLs and GPs by exploring its interaction with GTs with various acceptor specificities, GP-specific ß1,4-galactosyltransferase 1 (B4galt1) and GSL-specific ß1,4-galactosyltransferase isoenzymes 5 and 6 (B4galt5 and B4galt6). Using a novel NanoBiT assay, we found that A4galt can form homodimers and heterodimers with B4galt1 and B4galt5 in two cell lines, human embryonic kidney cells (HEK293T) and Chinese hamster ovary cells (CHO-Lec2). We found that A4galt-B4galts heterodimers preferred N-terminally tagged interactions, while in A4galt homodimers, the favored localization of the fused tag depended on the cell line used. Furthermore, by employing AlphaFold for state-of-the-art structural prediction, we analyzed the interactions and structures of these enzyme complexes. Our analysis highlighted that the A4galt-B4galt5 heterodimer exhibited the highest prediction confidence, indicating a significant role of A4galt heterodimerization in determining enzyme specificity toward GSLs and GPs. These findings enhance our knowledge of A4galt acceptor specificity and may contribute to a better comprehension of pathomechanisms of the Shiga toxin-related diseases.

13.
Front Neurosci ; 18: 1437668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145292

RESUMO

Hereditary spastic paraplegia (HSP) is a heterogeneous group of neurological disorders that are characterized by progressive spasticity and weakness in the lower limbs. SPG26 is a complicated form of HSP, which includes not only weakness in the lower limbs, but also cognitive impairment, developmental delay, cerebellar ataxia, dysarthria, and peripheral neuropathy, and is caused by biallelic mutations in the B4GALNT1 (beta-1,4-N-acetylgalactosaminyltransferase 1) gene. The B4GALNT1 gene encodes ganglioside GM2/GD2 synthase (GM2S), which catalyzes the transfer of N-acetylgalactosamine to lactosylceramide, GM3, and GD3 to generate GA2, GM2, and GD2, respectively. The present study attempted to characterize a novel B4GALNT1 variant (NM_001478.5:c.937G>A p.Asp313Asn) detected in a patient with progressive multi-system neurodegeneration as well as deleterious variants found in the general population in Japan. Peripheral blood T cells from our patient lacked the ability for activation-induced ganglioside expression assessed by cell surface cholera toxin binding. Structural predictions suggested that the amino acid substitution, p.Asp313Asn, impaired binding to the donor substrate UDP-GalNAc. An in vitro enzyme assay demonstrated that the variant protein did not exhibit GM2S activity, leading to the diagnosis of HSP26. This is the first case diagnosed with SPG26 in Japan. We then extracted 10 novel missense variants of B4GALNT1 from the whole-genome reference panel jMorp (8.3KJPN) of the Tohoku medical megabank organization, which were predicted to be deleterious by Polyphen-2 and SIFT programs. We performed a functional evaluation of these variants and demonstrated that many showed perturbed subcellular localization. Five of these variants exhibited no or significantly decreased GM2S activity with less than 10% activity of the wild-type protein, indicating that they are carrier variants for HSP26. These results provide the basis for molecular analyses of B4GALNT1 variants present in the Japanese population and will help improve the molecular diagnosis of patients suspected of having HSP.

14.
J Agric Food Chem ; 72(32): 18214-18224, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101349

RESUMO

Mogrosides are natural compounds highly valued in the food sector for their exceptional sweetness. Here, we report a novel O-glycosyltransferase (UGT74DD1) from Siraitia grosvenorii that catalyzes the conversion of mogrol to mogroside IIE. Site-directed mutagenesis yielded the UGT74DD1-W351A mutant, which exhibited the new capability to transform mogroside IIE into the valuable sweetener mogroside III, but with low catalytic activity. Subsequently, using structure-guided directed evolution with combinatorial active-site saturation testing, the superior mutant M6 (W351A/Q373 K/E49H/Q335W/S278C/D17F) were obtained, which showed a 46.1-fold increase in catalytic activity compared to UGT74DD1-W351A. Molecular dynamics simulations suggested that the enhanced activity and extended substrate profiles of M6 are due to its enlarged substrate-binding pocket and strengthened enzyme-substrate hydrogen bonding interactions. Overall, we redesigned UGT74DD1, yielding mutants that catalyze the conversion of mogrol into mogroside III. This study thus broadens the toolbox of UGTs capable of catalyzing the formation of valuable polyglycoside compounds.


Assuntos
Glicosiltransferases , Edulcorantes , Glicosiltransferases/genética , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Cucurbitaceae/química , Cucurbitaceae/enzimologia , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Biocatálise , Domínio Catalítico , Engenharia de Proteínas , Especificidade por Substrato , Cinética
15.
Physiol Mol Biol Plants ; 30(8): 1225-1238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39184559

RESUMO

Drought stress poses a significant threat to global agriculture, highlighting the urgent need to elucidate the molecular mechanisms underlying plant drought tolerance. The UDP-glycosyltransferase (UGT) gene family plays crucial roles in diverse biological processes in plants. In this study, we conducted a comprehensive analysis of the UGT gene family in wild barley EC_S1, focusing on gene characteristics, subcellular localization, phylogenetic relationships, and protein structure. A total of 175 UGT gene family members were identified, exhibiting diverse patterns in protein length, molecular weight, isoelectric point, hydrophilicity, and subcellular localization. Most genes are located at chromosome ends. Phylogenetic analysis grouped the UGT genes into seven clusters, with barley-specific group E. Expression analysis across barley tissues showed upregulation in roots and senescent leaves, implying diverse roles. Under drought stress, expression patterns varied, with drought-tolerant varieties showing fewer changes than sensitive ones. Clustering analysis revealed distinct expression patterns, suggesting regulatory functions in barley's drought response. As a case, the HvUGT1 was cloned. Overexpression of HvUGT1 in Arabidopsis enhanced drought tolerance, with increased water retention, reduced cell damage, and elevated flavonoid levels. Conversely, HvUGT1 silencing in wild barley decreased drought tolerance, accompanied by reduced antioxidant enzyme activity and flavonoid content. These results highlight HvUGT1's importance in enhancing plant drought tolerance, possibly through flavonoid-mediated ROS clearance. The research provides gene resources and valuable insights for the development of drought-resistant crops through targeted genetic manipulation strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01487-w.

16.
Genome Biol ; 25(1): 230, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187866

RESUMO

Seqrutinator is an objective, flexible pipeline that removes sequences with sequencing and/or gene model errors and sequences from pseudogenes from complex, eukaryotic protein superfamilies. Testing Seqrutinator on major superfamilies BAHD, CYP, and UGT removes only 1.94% of SwissProt entries, 14% of entries from the model plant Arabidopsis thaliana, but 80% of entries from Pinus taeda's recent complete proteome. Application of Seqrutinator on crude BAHDomes, CYPomes, and UGTomes obtained from 16 plant proteomes shows convergence of the numbers of paralogues. MSAs, phylogenies, and particularly functional clustering improve drastically upon Seqrutinator application, indicating good performance.


Assuntos
Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Software , Arabidopsis/genética , Arabidopsis/metabolismo , Proteoma , Família Multigênica , Análise de Sequência de Proteína , Bases de Dados de Proteínas
17.
Insects ; 15(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39194764

RESUMO

Cytochrome P450 monooxygenases (P450s) and UDP-glycosyltransferases (UGTs) are involved in the evolution of insecticide resistance. Leptinotarsa decemlineata (Say), the Colorado potato beetle (CPB), is a notorious insect that has developed resistance to various insecticides including neonicotinoids. This study investigated whether the differentially expressed P450 genes CYP9Z140 and CYP9AY1 and UGT gene UGT321AP1, found in our transcriptome results, conferred resistance to thiamethoxam in L. decemlineata. Resistance monitoring showed that the sampled field populations of L. decemlineata adults collected from Urumqi City and Qapqal, Jimsar, and Mulei Counties of Xinjiang in 2021-2023 developed low levels of resistance to thiamethoxam with resistance ratios ranging from 6.66- to 9.52-fold. Expression analyses indicated that CYP9Z140, CYP9AY1, and UGT321AP1 were significantly upregulated in thiamethoxam-resistant populations compared with susceptible populations. The expression of all three genes also increased significantly after thiamethoxam treatment compared with the control. Spatiotemporal expression patterns showed that the highest expression of CYP9Z140 and CYP9AY1 occurred in pupae and the midgut, whereas UGT321AP1 was highly expressed in adults and Malpighian tubules. Knocking down all three genes individually or simultaneously using RNA interference increased the sensitivity of adult L. decemlineata to thiamethoxam. These results suggest that overexpression of CYP9Z140, CYP9AY1, and UGT321AP1 contributes to the development of thiamethoxam resistance in L. decemlineata and provides a scientific basis for improving new resistance management of CPB.

18.
Biomed Pharmacother ; 178: 117194, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137647

RESUMO

Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.


Assuntos
Glicosiltransferases , Terapia de Alvo Molecular , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia , Humanos , Glicosiltransferases/metabolismo , Glicosiltransferases/antagonistas & inibidores , Animais , Glicosilação , Transdução de Sinais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-39120838

RESUMO

Rare ginsenosides Rg3 and Rh2, which exhibit diverse pharmacological effects, are derivatives of protopanaxadiol (PPD). UDP-glycosyltransferases, such as the M315F variant of Bs-YjiC (Bs-YjiCm) from Bacillus subtilis and UGTPg29 from Panax ginseng, can efficiently convert PPD into Rh2 and Rh2 into Rg3, respectively. In the present study, the N178I mutation of Bs-YjiCm was introduced, resulting in an increase in Rh2 production. UDP-glycosyltransferase UGTPg29 was then engineered to improve its robustness through semi-rational design. The variant R91M/D184M/A287V/A342L, which indicated desirable stability and activity, was utilized in coupling with the N178I variant of Bs-YjiCm and sucrose synthase AtSuSy from Arabidopsis thaliana to set up a "one-pot" three-enzyme reaction for the biosynthesis of Rg3. The influential factors, including the ratio and concentration of UDP-glycosyltransferases, pH, and the concentrations of UDP, sucrose, and DMSO, were optimized. On this basis, a fed-batch strategy was adopted to achieve a Rg3 yield as high as 12.38 mM (9.72 g/L) with a final yield of 68.78% within 24 h. This work may provide promising UDP-glycosyltransferase candidates for ginsenoside biosynthesis.

20.
BMC Cancer ; 24(1): 947, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095785

RESUMO

BACKGROUND: Although immunotherapy shows tremendous potential in the treatment of bladder cancer (BLCA), the overall prognosis and response rates to immunotherapy in BLCA remain suboptimal. METHODS: We performed an extensive evaluation of glycosyltransferase expression patterns in BLCA patients by analyzing 210 glycosyltransferase-related genes. Subsequently, we established correlations between these glycosyltransferase patterns, prognosis, and tumor microenvironment (TME) phenotypes. To offer personalized patient assessments, we developed a glycosyltransferase risk score that accurately predicts prognosis, TME phenotypes, and molecular subtypes. Importantly, we developed a RNA-seq cohort, named Xiangya cohort, to validate our results. RESULTS: Two distinct patterns of glycosyltransferase expression were identified, corresponding to inflamed and noninflamed TME phenotypes, and demonstrated the potential to predict prognosis. We developed and validated a comprehensive risk score that accurately predicted individual patient prognosis in the TCGA-BLCA cohort. Additionally, we constructed a nomogram that integrated the risk score with several key clinical factors. Importantly, this risk score was successfully validated in external cohorts, including the Xiangya cohort and GSE48075. Furthermore, we discovered a positive correlation between this risk score and tumor-infiltrating lymphocytes in both the TCGA-BLCA and Xiangya cohorts, suggesting that patients with a higher risk score exhibited an inflamed TME phenotype and were more responsive to immunotherapy. Finally, we observed that the high and low risk score groups were consistent with the luminal and basal subtypes of BLCA, respectively, providing further validation of the risk score's role in the TME in terms of molecular subtypes. CONCLUSIONS: Glycosyltransferase patterns exhibit distinct TME phenotypes in BLCA. Our comprehensive risk score provides a promising approach for prognostic prediction and assessment of immunotherapy efficacy, offering valuable guidance for precision medicine.


Assuntos
Glicosiltransferases , Imunoterapia , Nomogramas , Fenótipo , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Imunoterapia/métodos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Masculino , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Medição de Risco , Idoso , Regulação Neoplásica da Expressão Gênica , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA