Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 5: 2543, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853520

RESUMO

dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (.dot, .gv) files, also known as DOT files due to the .dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including Graphviz, Gephi, Tulip, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes) and advanced analysis and formatting, they do not have as many styling options as the Graphviz software suite. dot-app enables the interchange of networks between Cytoscape and DOT-compatible applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users.

2.
Bioinformation ; 2(1): 28-30, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18084648

RESUMO

UNLABELLED: HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. AVAILABILITY: Program is available from the authors for non-commercial purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA