Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 761
Filtrar
1.
J Dairy Sci ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245164

RESUMO

This study investigated the potential of 2'-Fucosyllactose (2'-FL) and galactooligosaccharides (GOS) combinations as a novel and cost-effective substitute for human milk oligosaccharides (HMOs) in promoting gut health and reducing inflammation. In vitro studies using Caco-2 cells showed that 2'-FL and GOS combinations (H1: GOS:2'-FL ratio of 1.8:1; H2: ratio of 3.6:1) reduced lipopolysaccharide-induced inflammation by decreasing pro-inflammatory markers, while individual treatments had no significant effects. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, combined 2'-FL and GOS supplementation alleviated symptoms, improved gut permeability, and enhanced intestinal structure, with the GH1 group (H1 combo with DSS) being the most effective. 2'-FL and GOS combinations also enhanced short-chain fatty acid production in infant fecal batch fermentation and mouse fecal analysis, with GH1 showing the most promising results. GH1 supplementation altered gut microbiota in mice with DSS-induced colitis, promoting microbial diversity and a more balanced Firmicutes to Bacteroidota ratio. Infant formula products (IFPs) containing 2'-FL and GOS combinations (IFP2: 174 mg GOS and 95 mg 2'-FL per 14 g serving, 1.8:1 ratio; IFP3: 174 mg GOS and 48 mg 2'-FL per 14 g serving, 3.6:1 ratio) demonstrated gastrointestinal protective and anti-inflammatory properties in a coculture model of Caco-2 and THP-1 cells. These findings suggest that 2'-FL and GOS combinations have potential applications in advanced infant formulas and supplements to promote gut health and reduce inflammation.

2.
Animal ; 18(9): 101288, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39226779

RESUMO

Brewery by-products are recognised as suitable rearing substrates for Hermetia illucens, better known as black soldier fly (BSF) but information about the impact of different ratios of brewer's spent grains (BSG) and brewer's spent yeast (BSY) are still scarce. This study evaluated the effects of BSG-BSY-based diets on BSF larval growth, survival, bioconversion efficiency, nutritional profile, and microbiota and mycobiota. A total of 3 000 6-day-old BSF larvae were allotted to five dietary treatments (six replicate boxes/diet, 100 larvae/box): (i) BSY2.5 (25 g/kg of BSY+975 g/kg of BSG), (ii) BSY5 (50 g/kg of BSY+950 g/kg of BSG), (iii) BSY7.5 (75 g/kg of BSY+925 g/kg of BSG), (iv) BSY10 (100 g/kg of BSY+900 g/kg of BSG), and (v) control (Gainesville diet). Larval weight and substrate pH were recorded every 4 days. At the end of the trial (5% of prepupae), bioconversion efficiency corrected for residue (BER), reduction rate (RR), and waste reduction index (WRI) were calculated, and the larval proximate composition, microbiota and mycobiota characterised. At 10 and 14 days of age, BSY7.5 and BSY10 larvae displayed higher weight than BSY2.5 and BSY5 (P < 0.05), with BSY10 larvae showing the highest weight among the BSG-BSY-based diets at the end of the trial (P < 0.05). The BSY7.5 and BSY10 larvae also displayed a better BER than BSY2.5 and BSY5 (P < 0.01), whereas similar RR, WRI, survival and development time, as well as pH, were, however, observed among the BSG-BSY-based diets (P > 0.05). The BSY10 larvae displayed lower ether extract content than the other BSG-BSY-based diets (P > 0.001). The use of BSG-BSY-based diets did not influence the alpha diversity of larval microbiota and mycobiota (P > 0.05), but a specific microbial signature was identified per each dietary treatment (Porphyromonadaceae [BSY5], Sphingomonas [BSY7.5], Bacillus [BSY10] and Ruminococcus and Myroides [BSG-BSY-based diets]; P < 0.05). Co-occurrence and co-exclusion analysis also showed that Saccharomyces cerevisiae and Pichia excluded and favoured, respectively, the presence of Streptomyces and Fluviicola, while Clavispora lusitaniae was associated with Myroides (P < 0.05). In conclusion, BSG-BSY-based diets are suitable for rearing HI in terms of larval performance, nutritional profile, and microbiota and mycobiota, with 7.5 and 10% of BSY inclusion levels being able to improve larval growth and bioconversion efficiency.

3.
Sociol Health Illn ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110548

RESUMO

Recently there has been growing recognition of the productive and protective features of our microbial kin and the crucial role of 'commensal' microbes in supporting and sustaining health. Current microbiological and pharmacological literature is increasingly highlighting the role of maternal gut microbiomes in the long-term health of both mothers and children. Drawing on the information and advice directed towards Australian parents from conception through the first years of a child's life, we consider its messaging about the need to secure for the foetus/future-child an enduring, optimal state of health by managing the maternal microbiome. We argue that this post-Pasteurian trend gives rise to relations of care that are, at once, newly collective and more-than-human-but also disciplinary in ways that position the maternal microbiome as a new site of scrutiny that disproportionately responsibilises and burdens mothers. We notice how microbiome research is used both to reframe motherhood as a form of micro(bial)-management and to maintain motherhood as a medicalised process. The feminist and more-than-human potential that this research can provide is missing in the way these resources are presented to parents.

4.
J Dairy Sci ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154729

RESUMO

Galacto-oligosaccharide (GOS) is a prebiotic isolated from whey. This study evaluated the optimal inclusion rate for improving growth and health performance of neonatal calves. Eighty-eight 2-5-d old Holstein bull calves were blocked by initial BW and randomly allocated to 1 of 4 treatments using a RCBD. Treatments comprised a 22:20 (CP: fat) amino acid balanced milk replacer (MR) with GOS added at the rate of 0 g/d (Control or GOS0), 2 g/d (GOS2), 4 g/d (GOS4), and 8 g/d (GOS8). Calves received 0.283 kg MR in 1.9 L fed 2 x/d for the first 14 d, then increased to 0.42 kg in 2.84 L fed 2x/d through d 35, followed by 0.42 kg MR in 2.84 L fed 1x/d through d 42, followed by weaning. The GOS inclusion rate remained constant as milk volume increased. Calves fed GOS at 2, 4, and 8 g/d demonstrated similar growth performance compared with calves fed GOS0. Calves fed GOS4 demonstrated a carryover effect into post-weaning resulting in a tendency for increased (P < 0.08) BW (82.5, 83.0, 85.3, and 83.1 kg for GOS0, GOS2, GOS4, and GOS8, respectively), BW gains (37.8, 38.2, 41.3 and 38.6 kg), and ADG (687, 696, 751, and 701 g/d). The ADG was increased by 9.3% when feeding calves GOS4 compared with calves fed GOS0. Calf starter DMI was greater at 7 (1.73,1.86, 1.95, and 1.83 kg/d) and 8 (2.34, 2.50, 2.60, 2.49 kg/d) wk of age for calves fed GOS4 compared with calves fed GOS0 with remaining treatments being intermediate and similar. Feed conversion (0.552, 0.529, 0.563, 0.545 kg/kg) was greater for calves fed GOS0 and GOS4 g/d compared with calves fed GOS2 with calves fed GOS8 being intermediate and similar. Body frame gains were similar for calves fed all GOS inclusion rates. A treatment by week interaction at wk 2 indicated that calves fed GOS2 demonstrated greater fecal score = 0 d than calves fed the remaining treatments, indicating less scours. In conclusion, supplementing GOS to a milk replacer at 4 g/d fed to neonatal calves improved growth performance without compromising health conditions.

5.
J Anim Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155509

RESUMO

The objective of this study was to determine the effects that increasing doses of encapsulated butyric acid and zinc (BZ) have on feedlot steer growth performance, rumen morphometrics and small intestine histology (data not statistically analyzed), dietary net energy utilization, and carcass characteristics. Steers [n = 272; shrunk body weight (BW) = 360 kg ± 74 kg] were assigned to dietary treatments [0 (CON), 1, 2, or 3 g BZ/kg diet dry matter] in a randomized complete block design (RCBD) with pen (n = 32 total; n = 8 per treatment) as experimental unit. Pens were blocked by cattle source and location within the feedyard. Cattle were fed until visually assessed to have 1.27 cm rib-fat and were shipped for harvest at a commercial beef abattoir. Carcass and liver health data were recorded. A subset of steers (n = 8 total; n = 2 per treatment) was harvested at the SDSU Meat Laboratory to collect empty body measurements, rumen samples for morphometric analysis, and duodenal and ileal samples for histological analysis to provide context to feeding trial outcomes. Feedlot growth performance data was calculated on a carcass-adjusted basis: hot carcass weight (HCW)/0.625. Data were analyzed as a RCBD with fixed effects of BZ inclusion level and block was considered a random effect; pre-planned contrasts for CON vs. BZ, plus linear, and quadratic responses were tested. No differences (P ≥ 0.11) were observed for final BW, dry matter intake, average daily gain (ADG), feed conversion efficiency (G:F), performance calculated dietary net energy, HCW, ribeye area, rib-fat thickness, marbling score, estimated empty body fat, or distribution of USDA yield grade (YG) 1, 3, 4, 5, and USDA quality grade among treatments. A tendency (P = 0.10) was observed for CON vs. BZ for calculated YG. Tendencies were detected for USDA YG 2 carcass distribution (linear; P = 0.07) and for normal and abscessed liver prevalence (quadratic; P = 0.08). Dressed yield tended to be greater (P = 0.08) for BZ vs. CON and increased with dose (linear; P = 0.05). Receiving period shrunk BW, ADG, and G:F were improved (P ≤ 0.02) for BZ supplemented steers compared to CON. Data from this study suggests that the addition of BZ to feedlot finishing diets for improving receiving period growth performance and decreasing the prevalence of abscessed livers should be further investigated.

6.
Animal ; 18(9): 101275, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39153440

RESUMO

Different yeast strains benefit postweaning piglets by promoting intestinal health. The objective of this study was to investigate the effect of a yeast mixture containing Kluyveromyces marxianus fragilis, Pichia guilliermondii, and Saccharomyces cerevisiae (Vetoquinol italia s.r.l., Italy) on gut health parameters and growth performance traits of weaned piglets. Forty-eight postweaning castrated male piglets (27 ± 1.7 days, 7.19 ± 0.54 kg) were randomly allocated to two homogeneous experimental groups and involved in a 28-day trial. Both the groups received a basal diet with (yeast mixture, YM) or without (control, CTR) the inclusion of 0.8% yeast mixture during weeks 1 and 2, and 0.6% during weeks 3 and 4. Individual BW and box feed intake were determined on days 0, 14, and 28, and average daily gain and Gain:Feed ratio were subsequently calculated for each administration period (0-14, 14-28). Individual faecal samples were collected for microbiota analysis on days 4, 14, 21, and 28, and faecal score was evaluated on the same days. At the end of the trial, 12 piglets for each group were sacrificed, and ileal tissue was sampled for morphological analysis and the evaluation of mucins profile, using Alcian-Blue/Periodic Acid-Shiff (PAS) staining. On ileum samples, dividing and differentiated epithelial cells were also identified using proliferating cell nuclear antigen and alkaline phosphatase expression, respectively. Differences in the means between the experimental groups were determined by ANOVA, while the metataxonomics analyses were performed by sequencing for V3 and V4 hypervariable regions of the 16S rRNA gene. Growth performance traits were not different among the two experimental groups when considering the whole trial period, while treated animals showed increased faecal consistency on weeks 1 and 4 (P = 0.036 and 0.021, respectively). Yeast mixture administration increased the abundance of Bifidobacterium (P = 0.006) and Coprococcus 2 (P = 0.015), and decreased Clostridium Sensu Stricto 1 (P = 0.019) at all the considered timepoints. Ileum villous height, villous width, and crypt depth were significantly increased by yeast mixture supplementation (P = 0.019; P = 0.013; P = 0.036, respectively), while no differences were observed for the villous:crypt ratio among the groups. The mucin profile showed no differences among experimental groups for acid and neutral glycoconjugates. However, a higher presence of PAS-positive mucins was highlighted in the villi of YM piglets (P < 0.001) compared to CTR. Overall, the administration of a yeast mixture to postweaning piglets showed positive effects on gut health when compared to piglets not receiving the tested product, improving beneficial genera and intestinal morphology.

7.
Cureus ; 16(8): e66698, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139804

RESUMO

Functional gastrointestinal disorders (FGIDs) refer to a group of disorders with chronic symptoms, such as abdominal pain, dysphagia, dyspepsia, diarrhea, constipation, and bloating. Among these, functional constipation significantly impacts the quality of life and is linked with comorbidities, such as anxiety and depression. The exact pathophysiology remains unclear despite the widespread occurrence. Research suggests that the gut-brain axis plays a role in FGIDs. Disruptions in the bidirectional communication between the brain and gastrointestinal (GI) tract contribute to GI symptoms and mood disturbances. The incomplete understanding of FGID pathophysiology has led to limited treatment options. Traditional treatments often focus on single symptoms and come with side effects, prompting the need for alternative approaches that address both GI and psychological components. Alternative approaches including herbal supplements offer a natural alternative to conventional medicine by promoting regularity and gut health. Abelmoschus esculentus L. or okra has a history of use in traditional medicine. Bioactive compounds such as polysaccharides and fibers found in okra offer gastroprotective benefits. Withania somnifera is a plant commonly referred to as ashwagandha. The plant root has been used for its health-promoting effects. Research supports the use of W. somnifera to help with stress and sleep. Digexin is a herbal supplement combining W. somnifera (ashwagandha) and A. esculentus (okra). It has shown promise in improving both GI regularity and mood by modulating the gut-brain axis. Clinical studies support the potential of a novel herbal supplement that aids in the management of FGIDs. This narrative review looks at FGIDs, etiologies, current treatment, and possible therapeutic supplements to aid in symptom management.

8.
Heliyon ; 10(14): e34389, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130426

RESUMO

This study investigated the influence of supplementing with jack beans on jejunal morphology, cecal short-chain fatty acids production, gene expression both of pro- and anti-inflammatory cytokines and tight junctions. Four treatment groups including 288 Indian River chicks that were one day old were randomized at random. While the treatment groups received jack bean supplementation at levels of 5 %, 10 %, and 15 %, the control group (0 %) was given a basal diet. For 11-35 days, each treatment consisted of 8 pens with 9 birds each. Supplementing with jack beans significantly enhanced butyrate production (P < 0.001), while at 10 % supplementation did not differ from control. Villus height (VH) and the ratio (VH:CD) were significantly (P < 0.001) increased by dietary treatments, while villus width (VW) and crypt depth (CD) were significantly (P < 0.05) decreased. TLR-3, TNF-a, and IL-6 were all significantly (P < 0.001) increased by dietary supplementation. However, at 15 %, TLR-3 and IL-6 were same with control. IL-18 was significantly (P < 0.05) decreased at 15 %. IL-10 decreased significantly (P < 0.001), but at 10 % same with control. At 5 and 10 %, IL-13 increased significantly (P < 0.001), whereas dietary treatments decreased at 15 % compared to control. Although ZO1 decreased significantly (P < 0.001) and OLCN increased significantly (P < 0.001), both ZO1 and OCLN were not significantly different from the control at 15 %. Dietary treatments significantly (P < 0.001) increased CLDN1 but did not differ from the control at 10 %. JAM2 decreased significantly (P < 0.001) with dietary treatments. In conclusion, jack bean supplementation may increase broiler chicken performance and intestinal health due to butyrate production. It may affect intestinal morphology and integrity by upregulating a tight junction protein gene. Jack beans also impacted jejunum immune responses and inflammatory cytokine gene expression.

9.
Cureus ; 16(7): e64286, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130956

RESUMO

INTRODUCTION: The gut-brain axis is a bidirectional communication network linking the gastrointestinal tract and the central nervous system via neuronal, hormonal, and antibody signaling pathways. Central to this connection is gut health, encompassing the balance and functionality of gut microbiota, which significantly impacts on mental and cognitive health. This study investigates the association between gut health and cognitive functioning in adults, highlighting the mechanisms by which gut microbiota influence brain health. OBJECTIVE: To examine the effects of gut health on adult cognitive performance, with a focus on the processes by which gut microbiota impacts brain health. METHODS: A quantitative cross-sectional study was conducted in Islamabad from January 2024 to April 2024, involving 140 adult participants. Data were collected using a comprehensive 16-item gut health questionnaire and the cognition self-assessment rating scale (C-SARS). The psychometric properties of these scales were assessed, and the data were analyzed using Statistical Product and Service Solutions (SPSS, v26; IBM SPSS Statistics for Windows, Armonk, NY). Analytical and descriptive statistics, including regression, chi-square, independent sample t-tests, and mean and standard deviation, were applied. RESULTS: The study found moderate associations between gut health and cognitive performance, particularly in memory and processing speed (R² = 0.17, ß = -1.9, p = 0.12 for general cognition; R² = 0.01, ß = -0.98, p = 0.02 for memory; R² = 0.03, ß = -0.18, p = 0.03 for processing speed). Gender and marital status differences were significant, with males exhibiting better gut health scores than females (M = 34.1, SD = 3.2 vs. M = 31.2, SD = 3.2, p = 0.00), and singles showing better cognitive performance compared to married individuals (M = 9.4, SD = 5.4 vs. M = 6.5, SD = 3.7, p = 0.03). CONCLUSION: The study highlights significant associations between gut health and cognitive functions, suggesting that gut microbiota composition can influence cognitive performance. Gender and marital status differences underscore the need to consider individual differences in gut-brain axis research. Future studies should replicate these findings in larger samples and explore gut microbiota-targeted interventions for cognitive health enhancement.

10.
Front Vet Sci ; 11: 1446233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144079

RESUMO

Unconventional protein feeds, characterized by low nutritional value, high variability, and poor palatability, have limited their application in swine production. Fermentation technology holds the key to addressing these shortcomings. Given the ban on antibiotics in China, the inferior quality of imported pig breeds, and long-term dependence on imported soybean, the prospects for fermented unconventional protein feeds are promising. This paper delves into the common types of fermented unconventional protein feeds, factors influencing the fermentation process, the mechanisms by which they enhance swine health, and the challenges and prospects of fermented feeds, offering theoretical insights for the future development of the feed industry.

11.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39101402

RESUMO

Brewer's dried yeast has a high nutritional value and has long been utilized by the animal feed industry as a source of protein, B-complex vitamins, and minerals. Brewer's dried yeast is also rich in bioactive compounds and may thereby be used as a functional ingredient, providing benefits beyond that of its nutrient content. Canola meal is a high-fiber ingredient that also has unique properties, especially when it is wetted and dried using a proprietary drying system that creates a "functionalized" canola meal. The objective of this experiment was to evaluate the effects of a yeast-enriched functionalized canola meal (FCM) on apparent total tract digestibility (ATTD) and the fecal quality, metabolite concentrations, and microbiota populations, and immune function of healthy adult dogs. Twelve adult female beagles (body weight [BW] = 7.6 ±â€…0.7 kg; age = 5.8 ±â€…1.3) were used in a replicated 4 × 4 Latin square design with 28-d periods. Each experimental period consisted of a 22-d adaptation phase, 5 d of total and fresh fecal collection, and blood collection on the last day. To start, all dogs were fed a basal diet to maintain BW for 14 d. Following fecal and blood collections at baseline (-1 d) to confirm health status, experimental periods began testing the following dietary treatments using a Latin square design experiment: 1) FCM only (no yeast inclusion), 2) FCM + low yeast dose, 3) FCM + medium yeast dose, and 4) FCM + high yeast dose. All treatments were top-dressed onto the basal diet at a rate estimated to be 1% of daily intake (as-is basis). Statistical analysis was performed using the PROC MIXED procedure of SAS with the main effect of treatment and the random effect of dog. Significance was declared at P ≤ 0.05, and trends reported if 0.05 < P ≤ 0.10. Supplementation with yeast-enriched FCM had no significant effect on the ATTD of macronutrients or energy or the fecal characteristics, metabolite concentrations, and microbiota populations of dogs. Additionally, no significant differences were observed in circulating immune cell counts or response to Toll-like receptor agonists among treatments. Our results suggest that the yeast-enriched FCM could be included in canine diets without negatively affecting stool quality, fecal metabolite concentrations, or ATTD. Further research is necessary to determine the effective dose of yeast-enriched FCM, potential mechanisms of action, and other potential implications it has on canine health.


Brewer's dried yeast has a high nutritional value and has long been utilized by the animal feed industry as a source of protein, B-complex vitamins, and minerals. Because yeast is rich in polyphenols, mannanoligosaccharides, and ß-glucans, it may also be used as a functional ingredient, providing benefits beyond that of its nutrient content. Canola meal is a high-fiber ingredient that also has unique properties, especially when it is wetted and dried using a proprietary drying system that creates a "functionalized" canola meal. In this experiment, functionalized canola meal was enriched with different levels of brewer's dried yeast, then fed to dogs to evaluate its effects on nutrient digestibility, stool characteristics, microbiota populations, and immunity. The results showed that the yeast-enriched functionalized canola meal had no impact on nutrient digestibility or fecal characteristics. Additionally, no differences were observed in immune cell counts or immune cell activation after challenge. In conclusion, yeast-enriched functionalized canola meal may be supplemented in canine diets without negatively affecting stool quality, fecal metabolite concentrations, or digestibility. Further research is necessary to determine the effective dose of yeast-enriched functionalized canola meal, potential mechanisms of action, and other potential implications it has on canine health.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Suplementos Nutricionais , Digestão , Fezes , Animais , Cães , Fezes/microbiologia , Fezes/química , Feminino , Ração Animal/análise , Dieta/veterinária , Digestão/efeitos dos fármacos , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Nutrientes , Fermento Seco/administração & dosagem , Fermento Seco/farmacologia , Fermento Seco/química , Leveduras/química
12.
Anim Biosci ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39210821

RESUMO

Objective: The current study investigated the effects of mulberry 1-deoxynijirimycin (DNJ) on the digestion ability, intestinal morphology, and intestinal barrier of rabbits. Methods: A total of 36 New Zealand White rabbits (male) about 45 days old (mean body weight of 1.05 0.04 kg) were reared and commercial diets were employed, and afterwards divided into three groups (n= 12) with different levels of DNJ extract additive in feed: T0 (0 g/kg), T1 (0.35 g/kg), T2 (0.7 g/kg) for 28 d. Results: The results demonstrated that T2 decreased the average daily gain (ADG) (P < 0.05). T1 and T2 decreased villus height and inflammatory factor levels as compared with T0 (P < 0.05). DNJ significantly decreased the content of valeric acid (P < 0.05). The content of acetic acid, propionic acid, iso butyric acid, iso valeric acid in T1 were higher than those in T0 and T2 (P < 0.05). The content of butyric acid in T2 was lower than it in T0 and T1 (P < 0.05). The content of caproic acid was firstly improved then reduced as the DNJ concentration improved (P < 0.05). T2 significantly increased the abundance of dgA-11_gut_group and Christensenellaceae_R-7_group while decreased Bacteroide and Ralstonia as compared with T0 (P < 0.05). Compared with T0, T1 and T2 significantly improved the gene expression of JAM2, JAM3, mucin4, mucin6 (P < 0.05), T1 significantly decreased the expression of occluding while T2 significantly increased (P < 0.05), T2 significantly increased the expression of claudin1 and claudin2 (P < 0.05). Conclusion: DNJ at high level changed microbiome compositions, inhibited inflammation, and improved intestinal barrier while it decreased the growth performance and shorted villus height in rabbit jejunum by regulating short chain fatty acid (SCFA) compositions in rabbits.

13.
Poult Sci ; 103(11): 104156, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173215

RESUMO

This study investigated the best oral delivery strategy (gavage or feed) for the B. subtilis expressing the chicken anti-microbial peptide cNK-2 (B. subtilis-cNK-2) in comparison to monensin, in chickens challenged with Eimeria acervulina (E. acervulina). A total of 120 broiler chickens were randomly allocated into 5 treatment groups in a completely randomized design: 1) uninfected chickens fed with basal diet (NC), 2) E. acervulina-infected chickens fed a basal diet (PC), 3) E. acervulina-infected chickens fed a basal diet supplemented with 90 mg monensin/kg feed (MO), 4) E. acervulina-infected chickens fed a basal diet and orally gavaged with B. subtilis-cNK-2 at 1 × 1010 cfu/d (CNK-O), and 5) E. acervulina-infected chickens fed a basal diet mixed with B. subtilis-cNK-2 at 1 × 1010 cfu/kg feed (CNK-F). The challenge consisted of 5,000 sporulated E. acervulina oocysts through oral gavage on d 15. Body weights were measured on d 7, 14, 21, and 23. Duodenal tissue and digesta samples were collected at 6 d postinfection (dpi) to assess the gut integrity, oxidative stress, mucosal immunity, and the gut microbiome. Fecal samples were collected from 6 to 8 dpi to enumerate the oocyst shedding. Chickens in the CNK-O group showed improved (P < 0.05) growth performance, gut integrity, and mucosal immunity compared to PC, comparable to chickens in the MO group. Chickens in the MO, CNK-F, and CNK-O treatment groups all showed lower (P < 0.05) oocyst shedding compared to PC chickens. Moreover, distinct cytokine profile, oxidative stress measures, tight junction proteins, and shifts in the gut microbiome with associated functional changes were observed in all challenge groups. In conclusion, we showed that the oral administration of B. subtilis-cNK-2 improved growth performance, enhanced local protective immunity, and reduced fecal oocyst shedding in broiler chickens infected with E. acervulina, demonstrating potential use of B. subtilis-cNK-2 as an alternative to antibiotics to protect chickens against coccidiosis.

15.
Foods ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39063303

RESUMO

Probiotics and prebiotics offer a range of advantageous effects on human health. The knowledge, attitudes, and practices (KAP) of individuals can impact their inclination to consume probiotics and prebiotics. The main objective of this study was to examine the KAP of the people in the United Arab Emirates (UAE) about probiotics and prebiotics consumption. Additionally, the study aimed to assess the impact of KAP and sociodemographic factors on the use of probiotics and prebiotics. In order to accomplish this objective, a verified online questionnaire was used with a five-point Likert scale and distributed using an online platform (Google Forms). A cross-sectional research, non-probability sampling was implemented, and G*Power statistical power analysis was used to estimate a sample size of 385 participants. A total of 408 replies were gathered. The population under study consisted of residents in the UAE between the ages of 18 to 64 years old, excluding populations under the age of 18 and those living outside the UAE. A total of 392 participants met the criteria for inclusion in this study. The research ethics committees of UAE University granted the study approval (ERSC_2024_4359), and the validity of the findings was confirmed through face-to-face interviews with around 50 individuals and a Cronbach's alpha test with result of 0.84. The statistical software SPSS version 29.0 for Mac OS was utilized to examine the relationships between KAP variables, including Chi-square tests and Pearson's correlation coefficients. The tests were selected based on their capacity to handle categorical and continuous data, respectively. The female population was 85.2% of the total, while the male population accounts for 14.8%. The age distribution of participants shows that the largest proportion, 68.4%, falls within the 18-24 age range. Out of the participants, 61.5% held a bachelor's degree. Most of the participants, 56.4%, were students, while 29.1% were employees. The average results indicate a significant inclination towards probiotics and prebiotics, as demonstrated by the scores above the midpoint for the six knowledge questions (M = 2.70), six attitude questions (M = 3.10), and six practice questions (M = 3.04). Several studies have examined this phenomenon; however, additional research comparing individuals in the UAE is necessary to fully comprehend the influence of KAP on the consumption of probiotics and prebiotics in the UAE.

16.
Foods ; 13(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063385

RESUMO

Probiotics restore gut microbial balance, thereby providing health-promoting effects to the host. They have long been suggested for managing intestinal disorders caused by pathogens and for improving gut health. This study evaluated the probiotic properties and anti-pathogenic effects of specific probiotic strains against the intestinal pathogens Staphylococcus aureus and Escherichia coli. The tested strains-Lactiplantibacillus plantarum LC27, Limosilactobacillus reuteri NK33, Lacticaseibacillus rhamnosus NK210, Bifidobacterium longum NK46, and Bifidobacterium bifidum NK175-were able to survive harsh conditions simulating gastric and intestinal fluids. These strains exhibited good auto-aggregation abilities (41.8-92.3%) and ideal hydrophobicity (30.9-85.6% and 38.3-96.1% for xylene and chloroform, respectively), along with the ability to co-aggregate with S. aureus (40.6-68.2%) and E. coli (38.6-75.2%), indicating significant adhesion levels to Caco-2 cells. Furthermore, these strains' cell-free supernatants (CFSs) demonstrated antimicrobial and antibiofilm activity against S. aureus and E. coli. Additionally, these strains inhibited gas production by E. coli through fermentative activity. These findings suggest that the strains tested in this study have potential as novel probiotics to enhance gut health.

17.
Life (Basel) ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39063578

RESUMO

The present study was performed to determine if ingesting a blend of probiotics plus amylase would alter the abundance and diversity of gut microbiota in subjects consuming the blend over a 6-week period. 16S and ITS ribosomal RNA (rRNA) sequencing was performed on fecal samples provided by subjects who participated in a clinical study where they consumed either a probiotic amylase blend (Bifidobacterium breve 19bx, Lactobacillus acidophilus 16axg, Lacticaseibacillus rhamnosus 18fx, and Saccharomyces boulardii 16mxg, alpha amylase (500 SKB (Alpha-amylase-Dextrinizing Units)) or a placebo consisting of rice oligodextrin. The abundance and diversity of both bacterial and fungal organisms was assessed at baseline and following 6 weeks of probiotic amylase blend or placebo consumption. In the subjects consuming the probiotic blend, the abundance of Saccharomyces cerevisiae increased 200-fold, and its prevalence increased (~20% to ~60%) (p ≤ 0.05), whereas the potential pathogens Bacillus thuringiensis and Macrococcus caseolyticus decreased more than 150- and 175-fold, respectively, after probiotic-amylase blend consumption. We also evaluated the correlation between change in microbiota and clinical features reported following probiotic amylase consumption. Nine (9) species (seven bacterial and two fungal) were significantly (negatively or positively) associated with the change in 32 clinical features that were originally evaluated in the clinical study. Oral supplementation with the probiotic-amylase blend caused a marked increase in abundance of the beneficial yeast S. cerevisiae and concomitant modulation of gut-dwelling commensal bacterial organisms, providing the proof of concept that a beneficial commensal organism can re-align the gut microbiota.

18.
Nutrients ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064664

RESUMO

This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.


Assuntos
Eixo Encéfalo-Intestino , Dieta , Microbioma Gastrointestinal , Transtornos de Enxaqueca , Humanos , Microbioma Gastrointestinal/fisiologia , Transtornos de Enxaqueca/microbiologia , Transtornos de Enxaqueca/terapia , Eixo Encéfalo-Intestino/fisiologia , Encéfalo , Comportamento Alimentar/fisiologia , Prebióticos/administração & dosagem , Probióticos/uso terapêutico
19.
Antioxidants (Basel) ; 13(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061833

RESUMO

Gastrointestinal (GI) afflictions are prevalent among the feline population, wherein the intricacies of the gut microbiome exert a profound influence on their overall health. Alterations within this microbial consortium can precipitate a cascade of physiological changes, notably in immune function and antioxidant capacity. This research investigated the impact of Bifidobacterium lactis (B. lactis) and Lactobacillus plantarum (L. plantarum) on cats' GI health, exploring the effects of probiotic supplementation on the intestinal ecosystem using 16S rRNA gene sequencing. The findings demonstrated a significant improvement in gut barrier function by reducing plasma concentrations of D-lactate (D-LA) by 30.38% and diamine oxidase (DAO) by 22.68%, while increasing the population of beneficial bacteria such as Lactobacillus. There was a notable 25% increase in immunoglobulin A (IgA) levels, evidenced by increases of 19.13% in catalase (CAT), 23.94% in superoxide dismutase (SOD), and 21.81% in glutathione peroxidase (GSH-Px). Further analysis revealed positive correlations between Lactobacillus abundance and IgA, CAT, and total antioxidant capacity (T-AOC) levels. These correlations indicate that B. lactis and L. plantarum enhance feline immune and antioxidant functions by increasing the abundance of beneficial Lactobacillus in the GI tract. These findings provide a foundation for probiotic interventions aimed at enhancing health and disease resistance in feline populations.

20.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062940

RESUMO

Diabetes mellitus, as a chronic metabolic disorder, significantly impacts the pancreas and among other organs, affects duodenal function. Emerging evidence suggests that probiotics can exert beneficial effects on gut health and metabolism. In our previous research, we evaluated the probiotic Lactobacillus paraplantarum BGCG11 primarily for its protective properties against diabetic rats' damaged liver and kidneys. In this work, we further examined the effects of probiotic strain BGCG11 on the function of the duodenum and pancreas in diabetic rats. We explored the potential mechanisms underlying the probiotic's effects, focusing on general indicators of diabetes, the architecture and morphology of pancreatic islets, duodenal integrity (measuring the transfer of fluid and serum zonulin level), and the modulation of gut microbiota composition. Our findings reveal the protective and regulatory roles of L. paraplantarum BGCG11 in mitigating diabetes-induced pancreatic and duodenal dysfunction regardless of its application time (pre- or post-treatment), highlighting its therapeutic potential in managing diabetes-related gastrointestinal complications.


Assuntos
Diabetes Mellitus Experimental , Duodeno , Microbioma Gastrointestinal , Lactobacillus , Pâncreas , Probióticos , Animais , Probióticos/farmacologia , Duodeno/microbiologia , Duodeno/metabolismo , Ratos , Diabetes Mellitus Experimental/terapia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Pâncreas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA