Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
J Sep Sci ; 47(13): e2400318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982556

RESUMO

Monitoring the levels of amino acids (AAs) in biological cell cultures provides key information to understand the regulation of cell growth and metabolism. Saccharomyces cerevisiae can naturally excrete AAs, making accurate detection and determination of amino acid levels within the cultivation medium pivotal for gaining insights into this still poorly known process. Given that most AAs lack ultraviolet (UV) chromophores or fluorophores necessary for UV and fluorescence detection, derivatization is commonly utilized to enhance amino acid detectability via UV absorption. Unfortunately, this can lead to drawbacks such as derivative instability, labor intensiveness, and poor reproducibility. Hence, this study aimed to develop an accurate and stable hydrophilic interaction liquid chromatography-tandem mass spectrometry analytical method for the separation of all 20 AAs within a short 17-min run time. The method provides satisfactory linearity and sensitivity for all analytes. The method has been validated for intra- and inter-day precision, accuracy, recovery, matrix effect, and stability. It has been successfully applied to quantify 20 AAs in samples of yeast cultivation medium. This endeavor seeks to enhance our comprehension of amino acid profiles in the context of cell growth and metabolism within yeast cultivation media.


Assuntos
Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Saccharomyces cerevisiae , Espectrometria de Massas em Tandem , Aminoácidos/metabolismo , Aminoácidos/análise , Espectrometria de Massas em Tandem/métodos , Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos
2.
Metabolomics ; 20(4): 77, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014104

RESUMO

INTRODUCTION: Accurately identifying and quantifying polar metabolites using untargeted metabolomics has proven challenging in comparison to mid to non-polar metabolites. Hydrophilic interaction chromatography and gas chromatography-mass spectrometry are predominantly used to target polar metabolites. OBJECTIVES: This study aims to demonstrate a simple one-step extraction combined with liquid chromatography-mass spectrometry (LC-MS) that reliably retains polar metabolites. METHODS: The method involves a MilliQ + 10% trichloroacetic acid extraction from 6 healthy individuals serum, combined with porous graphitic carbon liquid chromatography-mass spectrometry (LC-MS). The coefficient of variation (CV) assessed retention reliability of polar metabolites with logP as low as - 9. QreSS (Quantification, Retention, and System Suitability) internal standards determined the method's consistency and recovery efficiency. RESULTS: The method demonstrated reliable retention (CV < 0.30) of polar metabolites within a logP range of - 9.1 to 5.6. QreSS internal standards confirmed consistent performance (CV < 0.16) and effective recovery (70-130%) of polar to mid-polar metabolites. Quality control dilution series demonstrated that ~ 80% of annotated metabolites could be accurately quantified (Pearson's correlation coefficient > 0.80) within their concentration range. Repeatability was demonstrated through clustering of repeated extractions from a single sample. CONCLUSION: This LC-MS method is better suited to covering the polar segment of the metabolome than current methods, offering a reliable and efficient approach for accurate quantification of polar metabolites in untargeted metabolomics.


Assuntos
Grafite , Metabolômica , Ácido Tricloroacético , Ácido Tricloroacético/química , Metabolômica/métodos , Humanos , Cromatografia Líquida/métodos , Grafite/química , Porosidade , Masculino , Espectrometria de Massas/métodos
3.
Se Pu ; 42(7): 601-612, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966969

RESUMO

Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massa com Cromatografia Líquida
4.
J Chromatogr A ; 1730: 465123, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38981146

RESUMO

Psilocybin is a psychedelic compound found in some hallucinogenic "magic mushrooms". Psilocin is the active metabolite of Psilocybin, and it is the subject of several studies for the treatment of psychological disorders, such as anxiety, depression, and post-traumatic stress disorder. As such, the pharmacokinetic properties of psilocin should be evaluated to ensure its safety and efficacy as part of the drug development process. Based on the previously published studies, reversed-phase liquid chromatography (LC) was tested for psilocin quantification. The analysis, however, showed a major interference in mouse plasma that was not, to the best of our knowledge, reported previously. We, therefore, aimed to identify and separate the interference, using various chromatographic columns, mobile phase conditions, and mass spectrometers (MS) instruments. Chromatographic separation was achieved on an ultra high performance liquid chromatography (UHPLC) system, and a quadrupole-linear ion trap equipped with an electrospray ionization (ESI) source was used in positive ion mode with multiple reaction monitoring (MRM). Several chromatographic conditions and column chemistries, including C-18 and Phenyl-hexyl were initially tested, and failed to separate the interference. Exact mass measurement and MS/MS analysis were used to determine the structure of the interfering compound, which was confirmed to be tryptophan. Using the identified structure of the interfering compound, a fast and reliable hydrophilic interaction liquid chromatography (HILIC)-MS/MS method was developed and validated, that was capable of separating psilocin from the interference while achieving a 0.5 ng/ml lower limit of quantification (LLOQ). The validated method was successfully applied to a pharmacokinetic study where psilocin was orally administered to C57BL/6 mouse subjects. Psilocin concentration in all the analyzed mouse plasma samples was successfully determined.


Assuntos
Psilocibina , Espectrometria de Massas em Tandem , Animais , Camundongos , Espectrometria de Massas em Tandem/métodos , Psilocibina/análogos & derivados , Psilocibina/sangue , Psilocibina/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Alucinógenos/sangue , Alucinógenos/farmacocinética , Reprodutibilidade dos Testes , Camundongos Endogâmicos C57BL , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos
5.
Metabolites ; 14(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921432

RESUMO

Glioblastoma is a highly malignant brain tumor consisting of a heterogeneous cellular population. The transformed metabolism of glioblastoma cells supports their growth and division on the background of their milieu. One might hypothesize that the transformed metabolism of a primary glioblastoma could be well adapted to limitations in the variety and number of substrates imported into the brain parenchyma and present it their microenvironment. Additionally, the phenotypic heterogeneity of cancer cells could promote the variations among their metabolic capabilities regarding the utilization of available substrates and release of metabolic intermediates. With the aim to identify the putative metabolic footprint of different types of glioblastoma cells, we exploited the possibility for separation of polar and ionic molecules present in culture media or cell lysates by hydrophilic interaction liquid chromatography (HILIC). The mass spectrometry (MS) was then used to identify and quantify the eluted compounds. The introduced method allows the detection and quantification of more than 150 polar and ionic metabolites in a single run, which may be present either in culture media or cell lysates and provide data for polaromic studies within metabolomics. The method was applied to analyze the culture media and cell lysates derived from two types of glioblastoma cells, T98G and U118. The analysis revealed that even both types of glioblastoma cells share several common metabolic aspects, and they also exhibit differences in their metabolic capability. This finding agrees with the hypothesis about metabolic heterogeneity of glioblastoma cells. Furthermore, the combination of both analytical methods, HILIC-MS, provides a valuable tool for metabolomic studies based on the simultaneous identification and quantification of a wide range of polar and ionic metabolites-polaromics.

6.
J Agric Food Chem ; 72(27): 15366-15375, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38932744

RESUMO

Antibiotic residues may be present in fruit products from trees that were treated to combat bacterial diseases such as citrus greening or blight. A liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was developed for the simultaneous determination and identification of streptomycin, kasugamycin, penicillin, and oxytetracycline residues in fruit. Samples were extracted with acidic methanol and separation was optimized for a hydrophilic interaction LC column. A Q-Exactive HRMS instrument was used to obtain product ion spectra for analyte identification. Quantitation was performed with matrix-extracted calibration curves and internal standard correction. The method was tested on many different types of fruit. In general, fortified samples demonstrated acceptable recoveries (82-116%) and reproducibility (<15% RSD). Method detection limits for these analytes were well below the established US EPA tolerance levels. It was also possible to analyze the fruit extracts prepared using this method for additional chemical contaminants using LC-HRMS.


Assuntos
Antibacterianos , Resíduos de Drogas , Contaminação de Alimentos , Frutas , Espectrometria de Massas , Frutas/química , Antibacterianos/análise , Antibacterianos/química , Resíduos de Drogas/análise , Contaminação de Alimentos/análise , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos
7.
Food Chem ; 456: 139968, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38861865

RESUMO

Galactooligosaccharides (GOS) are important prebiotics with function closely related to their structure. However, a comprehensive overview of the structure-function relationship is still limited due to the challenge in characterizing multiple isomers in GOS. This study presents a strategy of combining both hydrophilic interaction liquid chromatography (HILIC) retention time and tandem mass spectrometry (MS/MS) fragmentation pattern to distinguish α/ß-linkages and linkage positions of disaccharide isomers in GOS through HILIC-MS/MS analysis. The results indicated that the ratio of m/z 203.0524 to m/z 365.1054 could distinguish α/ß-linkages, while the ratios of m/z 347.0947 to m/z 365.1054, m/z 245.0642 to m/z 365.1054 and HILIC retention time could distinguish (1 â†’ 2), (1 â†’ 3), (1 â†’ 4) and (1 â†’ 6) linkages. The above rules enabled effective characterization of disaccharides in GOS-containing food samples, including milk powder, rice flour, drink, yogurt. This method can be used in the quality control of GOS and future research on the structure-specific health effects of GOS.


Assuntos
Dissacarídeos , Oligossacarídeos , Espectrometria de Massas em Tandem , Dissacarídeos/química , Oligossacarídeos/química , Animais , Prebióticos/análise , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Leite/química , Oryza/química , Iogurte/análise
8.
J Am Soc Mass Spectrom ; 35(7): 1584-1593, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38842006

RESUMO

In prior research, hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) has demonstrated applicability for characterizing regioisomers in lipidomics studies, including phosphatidylglycerols (PG) and bis(monoacyl)glycerophosphates (BMP). However, there are other lipid regioisomers, such as phosphatidylethanolamines (PE) and lyso-N-acyl-PE (LNAPE), that have not been studied as extensively. Therefore, hyphenated mass spectrometric methods are needed to investigate PE and LNAPE regioisomers individually. The asymmetric structure of LNAPE favors isomeric species, which can result in coelution and chimeric MS/MS spectra. One way to address the challenge of chimeric MS/MS spectra is through mobility-resolved fragmentation using trapped ion mobility spectrometry (TIMS). Therefore, we developed a multidimensional HILIC-TIMS-MS/MS approach for the structural characterization of isomeric phosphatidylethanolamines in both negative and positive ionization modes. The study revealed the complementary fragmentation pattern and ion mobility behavior of LNAPE in both ionization modes, which was confirmed by a self-synthesized LNAPE standard. With this knowledge, a distinction of regioisomeric PE and LNAPE was achieved in human plasma samples. Furthermore, regioisomeric LNAPE species containing at least one unsaturated fatty acid were noted to exhibit a change in collision cross-section in positive ionization mode, leading to a lipid characterization with respect to fatty acyl positional level. Similar mobility behavior was also observed for the biological LNAPE precursor N-acyl-PE (NAPE). Application of this approach to plasma and cereal samples demonstrated its effectiveness in regioisomeric LNAPE and NAPE species' elucidation.


Assuntos
Espectrometria de Mobilidade Iônica , Fosfatidiletanolaminas , Espectrometria de Massas em Tandem , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/análise , Espectrometria de Massas em Tandem/métodos , Humanos , Isomerismo , Espectrometria de Mobilidade Iônica/métodos , Cromatografia Líquida/métodos , Acilação , Interações Hidrofóbicas e Hidrofílicas
9.
J Chromatogr A ; 1730: 465060, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38861823

RESUMO

Hydrophilic interaction (liquid) chromatography (HILIC) has become the first choice LC mode for the separation of hydrophilic analytes. Numerous studies reported the poor retention time repeatability of HILIC. The problem was often ascribed to slow equilibration and insufficient re-equilibration time to establish the sensitive semi-immobilized water layer at the interface of the polar stationary phase and the bulk mobile phase. In this study, we compare retention time repeatability in HILIC for borosilicate glass and PFA (co-polymer of tetrafluoroethylene and perfluoroalkoxyethylene) solvent bottles. During this study, we observed peak patterns shifting towards higher retention times (for metabolites and peptides) and lower retention times (oligonucleotide sample) with ongoing analysis time when standard borosilicate glass bottles were used as solvent reservoirs. It was hypothesized that release of ions (sodium, potassium, borate, etc.) from the borosilicate glass bottles leads to alterations (thickness and electrostatic screening effects) in the semi-immobilized water layer which is adsorbed to the polar stationary phase surface under acetonitrile-rich eluents in HILIC with concomitant shifts in retention. When PFA solvent bottles were employed instead of borosilicate glass, retention time repeatability was greatly improved and changed from average 8.4 % RSD for the tested metabolites with borosilicate glass bottles to 0.14 % RSD for the PFA solvent bottles (30 injections over 12 h). Similar improvements were observed for peptides and oligonucleotides. This simple solution to the retention time repeatability problem in HILIC might contribute to a better acceptance of HILIC, especially in fields like targeted and untargeted metabolomics, peptide and oligonucleotide analysis.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Peptídeos/análise , Peptídeos/química , Fluorocarbonos/análise , Fluorocarbonos/química , Oligonucleotídeos/análise , Oligonucleotídeos/química , Solventes/química , Vidro/química
10.
Food Chem ; 458: 140205, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943962

RESUMO

The accurate determination of polar cationic pesticides in food poses a challenge due to their high polarity and trace levels in complex matrices. This study hypothesized that the use of halloysite nanotubes (HNTs) can significantly enhance the extraction efficiency and sensitivity of these analytes because of their rich hydroxyl groups and cation exchange sites. Therefore, we chemically incorporated HNTs with organic polymer monoliths for in-tube solid-phase microextraction (SPME). This novel hybrid monolith extended service life, improved adsorption capacity, and exhibited excellent extraction performance for polar cationic pesticides. Based on these advancements, a robust and sensitive in-tube SPME-HILIC-MS/MS method was constructed to determine trace levels of polar cationic pesticides in complex food matrices. The method achieved limits of detection of 1.9, 2.1, and 0.1 µg/kg for maleic hydrazide, amitrole, and cyromazine, respectively. The spiked recoveries in five food samples ranged from 80.2 to 100.8%, with relative standard deviations below 10.7%.

11.
Curr Opin Chem Biol ; 80: 102466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772215

RESUMO

Following in the footsteps of genomics and proteomics, metabolomics has revolutionised the way we investigate and understand biological systems. Rapid development in the last 25 years has been driven largely by technical innovations in mass spectrometry and nuclear magnetic resonance spectroscopy. However, despite the modest size of metabolomes relative to proteomes and genomes, methodological capabilities for robust, comprehensive metabolite analysis remain a major challenge. Therefore, development of new methods and techniques remains vital for progress in the field. Here, we review developments in LC-MS, GC-MS and NMR methods in the last few years that have enhanced quantitative and comprehensive metabolome coverage, highlighting the techniques involved, their technical capabilities, relative performance, and potential impact.


Assuntos
Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Humanos , Animais , Cromatografia Líquida/métodos , Metaboloma
12.
Heliyon ; 10(10): e31213, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38799737

RESUMO

A hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC/MS/MS) method was developed and validated for the quantitative analysis of the fully phosphorothioate modified oligonucleotide nusinersen. HILIC/MS/MS method is more robust and compatible with mass spectrometry than ion pair reversed-phase liquid chromatography-tandem mass spectrometry (IP-RP-LC/MS/MS). Various types and concentrations of additives and different pH of mobile phase affected the mass spectrometry response, chromatographic peak shape and retention of nusinersen. The optimized extraction method of nusinersen employs hydrophilic-lipophilic balance solid phase extraction, with a recovery of up to 80 %. Chromatographic quantification was performed using a gradient system on an amide column and the mobile phase consisted of ammonium acetate, acetonitrile and water in a certain proportion. The fully phosphorothioate modified nusinersen can obtain a high mass spectrometry response by providing greater peak symmetry and high ionization efficiency in a high-pH mobile phase. Moreover, the significant carry over interference was observed at the pH 6.3 of the mobile phase. Adjusting the pH value up to 10, and the carry over interference disappeared. The lower limit of quantitation of this developed HILIC/MS/MS assay was 30.0 ng/mL and the method was systematic methodology validated. This HILIC/MS/MS method provides an attractive and robust alternative for the quantitative analysis of nusinersen and was applied in the pharmacokinetic study of nusinersen in rabbits.

13.
J Sep Sci ; 47(9-10): e2300935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801757

RESUMO

A common separation approach for polar compounds involves coupling reversed-phase liquid chromatography (RPLC) with hydrophilic interaction chromatography (HILIC) in two-dimensional chromatography. The higher proportion of acetonitrile used in the HILIC mobile phase, which enhances mass spectrometry detection, encourages its use in the second dimension. Previous studies demonstrated that the HILIC column can be partially equilibrated within very short timeframes without compromising retention time stability, rendering it suitable in online comprehensive two-dimensional liquid chromatography (LC×LC) setups. In addition, a specific number of conditioning cycles seems necessary to establish stable retention times. Here, the repeatability of HILIC when employed as second dimension in LC×LC was investigated, with a focus on determining the required number of conditioning cycles to achieve repeatable retention times. Various parameters influenced by the LC×LC online modulation system were studied, such as steep gradient slopes up to 8%, and very short equilibration times, less than or equal to dead time, as well as injection volume and solvent, which depend on the first dimension. Finally, the use of HILIC as a second dimension with tailored conditioning runs was applied to the analysis of hyaluronic acid hydrogel digests. The application of an RPLC×HILIC method using five conditioning runs yielded exceptional stability in second-dimension retention times.

14.
Talanta ; 275: 126134, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692044

RESUMO

Phosphoenolpyruvate (PEP) is an essential intermediate metabolite that is involved in various vital biochemical reactions. However, achieving the direct and accurate quantification of PEP in plasma or serum poses a significant challenge owing to its strong polarity and metal affinity. In this study, a sensitive method for the direct determination of PEP in plasma and serum based on ethylenediaminetetraacetic acid (EDTA)-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry was developed. Superior chromatographic retention and peak shapes were achieved using a zwitterionic stationary-phase HILIC column with a metal-inert inner surface. Efficient dechelation of PEP-metal complexes in serum/plasma samples was achieved through the introduction of EDTA, resulting in a significant enhancement of the PEP signal. A PEP isotopically labelled standard was employed as a surrogate analyte for the determination of endogenous PEP, and validation assessments proved the sensitivity, selectivity, and reproducibility of this method. The method was applied to the comparative quantification of PEP in plasma and serum samples from mice and rats, as well as in HepG2 cells, HEK293T cells, and erythrocytes; the results confirmed its applicability in PEP-related biomedical research. The developed method can quantify PEP in diverse biological matrices, providing a feasible opportunity to investigate the role of PEP in relevant biomedical research.


Assuntos
Ácido Edético , Interações Hidrofóbicas e Hidrofílicas , Fosfoenolpiruvato , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Animais , Humanos , Ácido Edético/química , Camundongos , Cromatografia Líquida/métodos , Ratos , Fosfoenolpiruvato/química , Fosfoenolpiruvato/sangue , Fosfoenolpiruvato/metabolismo , Células HEK293 , Células Hep G2 , Ratos Sprague-Dawley , Masculino
15.
J Proteome Res ; 23(6): 2000-2012, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38752739

RESUMO

Biological interpretation of untargeted LC-MS-based metabolomics data depends on accurate compound identification, but current techniques fall short of identifying most features that can be detected. The human fecal metabolome is complex, variable, incompletely annotated, and serves as an ideal matrix to evaluate novel compound identification methods. We devised an experimental strategy for compound annotation using multidimensional chromatography and semiautomated feature alignment and applied these methods to study the fecal metabolome in the context of fecal microbiota transplantation (FMT) for recurrent C. difficile infection. Pooled fecal samples were fractionated using semipreparative liquid chromatography and analyzed by an orthogonal LC-MS/MS method. The resulting spectra were searched against commercial, public, and local spectral libraries, and annotations were vetted using retention time alignment and prediction. Multidimensional chromatography yielded more than a 2-fold improvement in identified compounds compared to conventional LC-MS/MS and successfully identified several rare and previously unreported compounds, including novel fatty-acid conjugated bile acid species. Using an automated software-based feature alignment strategy, most metabolites identified by the new approach could be matched to features that were detected but not identified in single-dimensional LC-MS/MS data. Overall, our approach represents a powerful strategy to enhance compound identification and biological insight from untargeted metabolomics data.


Assuntos
Transplante de Microbiota Fecal , Fezes , Metaboloma , Metabolômica , Espectrometria de Massas em Tandem , Humanos , Fezes/microbiologia , Fezes/química , Cromatografia Líquida/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/metabolismo , Clostridioides difficile/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/análise , Espectrometria de Massa com Cromatografia Líquida
16.
J Chromatogr A ; 1726: 464973, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38729044

RESUMO

Hydrophilic interaction chromatography (HILIC) offers different selectivity than reversed-phase liquid chromatography (RPLC). However, our knowledge of the driving force for selectivity is limited and there is a need for a better understanding of the selectivity in HILIC. Quantitative assessment of retention mechanisms makes it possible to investigate selectivity based on understanding the underlying retention mechanisms. In this study, selected model compounds from the Ikegami selectivity tests were evaluated on different polar stationary phases. The study results revealed significant insights into the selectivity in HILIC. First, hydroxy and methylene selectivity is driven by hydrophilic partitioning; but surface adsorption for 2-deoxyuridine or 5-methyluridine reduces the selectivity factor. Furthermore, the retention of 2-deoxyuridine or 5-methyluridine by surface adsorption in combination with the phase ratio explain the difference in hydroxy or methylene selectivity observed among different stationary phases. Investigations on xanthine positional isomers (1-methylxanthine/3-methylxanthine, theophylline/theobromine) indicate that isomeric selectivity is controlled by surface adsorption; however, hydrophilic partitioning may contribute to resolution by enhancing overall retention. In addition, two pairs of nucleoside isomers (adenosine/vidarabine, 2'-deoxy and 3'-deoxyguanosine) provide an example that isomeric selectivity can also be controlled by hydrophilic partitioning if their partitioning coefficients are significantly different in HILIC. Although more data is needed, the current study provides a mechanistic based understanding of the selectivity in HILIC and potentially a new way to design selectivity tests.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Adsorção , Cromatografia Líquida/métodos , Isomerismo , Nucleosídeos/química , Nucleosídeos/análise , Cromatografia de Fase Reversa/métodos , Xantinas/química
17.
J Chromatogr A ; 1725: 464957, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703458

RESUMO

This study focuses on the purification and detection of glufosinate (GLUF) and its metabolites N-acetyl GLUF and MPP in plasma samples. A Dikma Polyamino HILIC column was used for the effective retention and separation of GLUF and its metabolites, and the innovative addition of a low concentration of ammonium fluoride solution to the mobile phase effectively improved the detection sensitivity of the target analytes. Monodisperse core-shell weak cation exchange (WCX)/C18 bifunctional magnetic polymer composites (Fe3O4@WCX/C18) were prepared in a controllable manner, and their morphology and composition were fully characterized. The Fe3O4@WCX/C18 microspheres were used as a magnetic solid-phase extraction (MSPE) adsorbent for the sample purification and detection of GLUF and its metabolites in plasma samples combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The purification conditions of Fe3O4@WCX/C18 microspheres for GLUF and its metabolites in spiked plasma samples were optimized to achieve the best MSPE efficiency. The purification mechanisms of the target analytes in plasma samples include electrostatic attraction and hydrophobic interactions. Furthermore, the effect of the molar ratio of the two functional monomers 4-VBA and 1-octadecene in the adsorbent was optimized and it shows that the bifunctional components WCX/C18 have a synergistic effect on the determination of GLUF and its metabolites in plasma samples. In addition, the present study compared the purification performance of the Fe3O4@WCX/C18 microsphere-based MSPE method with that of the commercial Oasis WCX SPE method, and the results showed that the Fe3O4@WCX/C18 microsphere-based MSPE method established in this work had a stronger ability to remove matrix interferences. Under optimal purification conditions, the recoveries of GLUF and its metabolites in plasma were 87.6-111 % with relative standard deviations (RSDs) ranging from 0.2 % to 4.8 %. The limits of detection (LODs, S/N≥3) and limits of quantification (LOQs, S/N≥10) were 0.10-0.18 µg/L and 0.30-0.54 µg/L, respectively. The MSPE-LC-MS/MS method developed in this study is fast, simple, accurate and sensitive and can be used to confirm GLUF intoxication based not only on the detection of the GLUF prototype but also on the detection of its two metabolites.


Assuntos
Aminobutiratos , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Aminobutiratos/sangue , Aminobutiratos/química , Cromatografia Líquida/métodos , Limite de Detecção , Polímeros/química , Animais , Microesferas , Adsorção , Ratos , Cromatografia por Troca Iônica/métodos
18.
Metabolites ; 14(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786757

RESUMO

Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set.

19.
Mol Cell Proteomics ; 23(5): 100762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608839

RESUMO

Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.


Assuntos
Arabidopsis , Cromatografia de Afinidade , Fosfoproteínas , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/análise , Cromatografia de Afinidade/métodos , Proteínas de Arabidopsis/metabolismo , Glicopeptídeos/metabolismo , Glicopeptídeos/análise , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Fosforilação , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Espectrometria de Massas em Tandem , Proteínas de Plantas/metabolismo
20.
J Am Soc Mass Spectrom ; 35(6): 1110-1119, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38665041

RESUMO

Quantifying reactive aldehyde biomarkers, such as malondialdehyde, acrolein, and crotonaldehyde, is the most preferred approach to determine oxidative stress. However, reported analytical methods lack specificity for accurately quantifying these aldehydes as certain methodologies may produce false positive results due to harsh experimental conditions. Thus, in this research work, a novel HILIC-MS/MS method with endogenous histidine derivatization is developed, which proves to have higher specificity and reproducibility in quantifying these aldehydes from the biological matrix. To overcome the reactivity of aldehyde, endogenous histidine is used for its derivatization. The generated adduct is orthogonally characterized by NMR and LC-HRMS. The method employed a hydrophilic HILIC column and multiple reaction monitoring (MRM) to accurately quantify these reactive aldehydes. The developed method is an unequivocal solution for quantifying stress in in vivo and in vitro studies.


Assuntos
Acroleína , Biomarcadores , Malondialdeído , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Biomarcadores/análise , Malondialdeído/análise , Malondialdeído/química , Acroleína/análise , Acroleína/química , Animais , Estresse Oxidativo , Interações Hidrofóbicas e Hidrofílicas , Reprodutibilidade dos Testes , Humanos , Histidina/análise , Histidina/química , Cromatografia Líquida/métodos , Aldeídos/análise , Aldeídos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA