RESUMO
The primary goal was to enhance the stability and bioavailability of chloramphenicol for ophthalmic use without compromising patient comfort, such as causing blurry vision. This study employed a 2-level full factorial design to optimize the formulation, exploring different concentrations of poloxamer 407 and HPMC to achieve this objective.
Assuntos
Cloranfenicol , Géis , Derivados da Hipromelose , Poloxâmero , Cloranfenicol/química , Poloxâmero/química , Derivados da Hipromelose/química , Géis/química , Estabilidade de Medicamentos , Antibacterianos/química , Antibacterianos/farmacocinética , Composição de Medicamentos/métodos , Disponibilidade Biológica , Humanos , Química Farmacêutica/métodosRESUMO
Precision in dosing is crucial for optimizing therapeutic outcomes and preventing overdosing, especially in preterm infants. Traditional manual adjustments to adapt the dose often lead to inaccuracies, contamination risks, and reduced precision. To overcome these challenges, semi-solid extrusion 3D printing was used to create personalised gel-based caffeine dosage forms. The hydrogels, made from agar and hydroxypropyl methylcellulose, demonstrated excellent rheological properties, ensuring uniform extrusion and accurate shape retention during and after printing. This gel formulation allowed for precise adjustments of caffeine volume and content tailored to a neonate weighing 1.36 kg, achieving a recovery of 103.46%, well within acceptable limits. Additionally, three production batches confirmed the process's reproducibility with minimal variability. Forced degradation studies showed that both pure caffeine and caffeine in the gel matrix exhibited similar stability profiles, confirming the drug's chemical integrity. The printed gel dosage forms also displayed immediate-release characteristics, with over 80% of caffeine released within 45 min, highlighting their suitability for rapid therapeutic action. These findings emphasise the potential of SSE 3DP and gel-based formulations to produce personalised drug delivery systems with high precision, reproducibility, and reliability.
RESUMO
Foodborne disease is caused by consuming pathogenic microorganism-contaminated food that generates poisoning. Escherichia coli is a bacterium that causes foodborne disease, which is neutralized using gel hand sanitizer containing a bacteriophage with hydroxypropyl methylcellulose (HPMC) and active glycerin ingredients. Phages are viruses that infect bacteria naturally. This study aims to examine the effect of HPMC and glycerin on the physical properties and activity of bacteriophage ɸPT1b-based hand sanitizer gel, as well as determining the optimum composition of the combination of HPMC and glycerin in the same. The results of the study shows that the HPMC and glycerin factors show a positive value for inhibitory response, with the HPMC factor showing the best results. The optimum formula results using Design Expert 12.0 software were 0.75% for HPMC and 7.5% for glycerin, while the values for viscosity, dispersal power, and inhibitory power were 32,500 dPas, 7,737 cm, and 1.300 cm, respectively. In conclusion, an increase in HPMC concentration affects the increment of the viscosity score and decreases spread response. However, the glycerin concentration increment reduces the viscosity score but raises the spread value.
RESUMO
Probiotic strains offer a novel and potentially effective approach to treat oral candidiasis. Buccal mucoadhesive films have attracted considerable attention in recent years due to their unique ability to adhere and persist on the oral mucosa, while gradually releasing their encapsulated drug content. Therefore, the aim of the study was to develop mucoadhesive films containing probiotic extract for treatment of oral candidiasis. Mucoadhesive films were fabricated with hydrophilic polymers, such as polyvinyl alcohol (PVA) and hydroxy propyl methyl cellulose (HPMC). Then, films were evaluated regarding their thickness, pH, tensile strength and elongation, swelling, in vitro release and antifungal activity. The type of polymer used had an impact on the mechanical properties, swelling and release of the films. Films prepared using PVA showed significantly higher tensile strength and elongation at break values compared to those prepared using HPMC. However, swelling index increased with enhancing HPMC concentration in the films. The release of probiotic extract from the film prepared with HPMC occurred slowly. Based on these results, films containing 54 % HPMC and 26 % PVA were selected as optimal formulation. Moreover, it was found that optimal film containing probiotic extract could inhibit the growth of Candida albicans. Regarding to the obtained results, probiotic oral adhesive mucoadhesive films can be considered as a promising alternative to traditional methods in the treatment of candidiasis.
Assuntos
Antifúngicos , Candida albicans , Candidíase Bucal , Mucosa Bucal , Álcool de Polivinil , Probióticos , Resistência à Tração , Probióticos/administração & dosagem , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/administração & dosagem , Antifúngicos/química , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Álcool de Polivinil/química , Mucosa Bucal/microbiologia , Derivados da Hipromelose/química , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Humanos , AdesividadeRESUMO
Dry eye disease (DED) is a highly prevalent condition, resulting in reduced quality of life, lower participation in social life and impaired work efficiency. Hydroxypropyl methylcellulose (HPMC) is a cellulose-based viscosity-enhancing agent and is one of the most popular therapeutic ingredients in artificial tears. This review aims to evaluate the literature on the efficacy and safety of HPMC used in the treatment of DED. Literature searches were conducted in PubMed and Cochrane CENTRAL. A total of 28 clinical trials from 26 publications are included in this review, including 21 clinical intervention studies evaluating the effect of HPMC treatment over time and seven single instillation studies evaluating the short-term physical and symptomatic effects of HPMC after drop-instillation. The duration of clinical intervention studies ranged from 2 weeks to 5.5 months. DED severity ranged from mild to severe. Drop frequency ranged from two to up to 16 drops per day. HPMC concentration in artificial tears ranged from 0.2% to 0.5%. No major complications or adverse events were reported. Artificial tears containing HPMC were effective at improving symptoms and some signs of DED. However, combination drops with HPMC plus other therapeutic ingredients seem more effective than HPMC alone. HPMC appears to be equally effective or inferior to hyaluronic acid (HA). There is no evidence of superiority or inferiority to either carboxymethylcellulose (CMC) or polyethylene glycol 400/propylene glycol (PEG/PG). No single study explained the choice of drop frequency or HPMC concentration. More well-designed studies are needed to determine an evidence-based standard for HPMC treatment, including drop frequency, concentration and molecular weight for different DED severity and subgroups.
RESUMO
We present the development and characterization of a nasal drug delivery system comprised of a thermosensitive mucoadhesive hydrogel based on a mixture of the polymers Poloxamer 407, Poloxamer 188 and Hydroxypropyl-methylcellulose, and the psychedelic drug 5-methoxy-N,-N-dimethyltryptamine. The development relied on a 3 × 3 Box-Behnken experimental design, focusing on optimizing gelification temperature, viscosity and mucoadhesion. The primary objective of this work was to tailor the formulation for efficient nasal drug delivery. This would increase contact time between the hydrogel and the mucosa while preserving normal ciliary functioning. Following optimization, the final formulation underwent characterization through an examination of the in vitro drug release profile via dialysis under sink conditions. Additionally, homogeneity of its composition was assessed using Raman Confocal Spectroscopy. The results demonstrate complete mixing of drug and polymers within the hydrogel matrix. Furthermore, the formulation exhibits sustained release profile, with 73.76% of the drug being delivered after 5 h in vitro. This will enable future studies to assess the possibility of using this formulation to treat certain mental disorders. We have successfully developed a promising thermosensitive and mucoadhesive hydrogel with a gelling temperature of around 32 °C, a viscosity close to 100 mPas and a mucoadhesion of nearly 4.20 N·m.
RESUMO
Colon-targeted drug delivery continues to generate increasing attention for its prospects in treating inflammatory bowel disease (IBD). This study aimed to develop and evaluate colon-targeted solid dispersions of dexamethasone (DEX-SDs) in vitro to reduce its systemic exposure. This would ultimately improve the therapeutic efficacy of DEX while minimizing its adverse effects. Different DEX-SDs formulations were prepared utilizing Eudragit S100 (EU S100) and a combination of hydroxypropyl methyl cellulose (HPMC) and EU S100 to tune its drug release profile suitable for colonic delivery. The fabricated formulations were extensively characterized via Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and polarized light microscopy (PLM). The different characterization techniques strongly suggest preparing solid solution-type solid dispersions of DEX with the other polymers (DEX-SDs). In addition, the in vitro dissolution of DEX-SDs was evaluated using two dissolution media (pH 1.2 and 7.4). The in vitro release of DEX-SDs was low in the acidic media and higher and sustained in the basic medium, leading to the conclusion that the developed DEX-SDs may represent an effective technology can overcome challenges related to poor drug solubility and bioavailability.
RESUMO
BACKGROUND: Diltiazem hydrochloride is a calcium channel-blocker with a plasma elimination half-life of 4.4 ± 1.3 h and has a narrow absorption window. So, this work aimed to prepare a gastro-retentive floating matrix tablet. METHODS: The direct compression method was used to manufacture tablets. 32 factorial design was applied for optimization, taking Hydroxypropyl Methylcellulose K100M (HPMC K 100M) and the amount of sodium bicarbonate as independent factors and cumulative percentage release at 1 h, at 6 h, and at 12 h and floating lag time as dependent variables. RESULTS: The high amount of HPMC K100M and sodium bicarbonate shows good results. The optimized preparation was evaluated for differential scanning calorimetry, in-vivo gastric retention in male albino rabbits, kinetic modeling, and stability study. An in vivo study revealed gastric retention of tablets up to 6 h in healthy male Albino rabbits. The stability study indicated no significant change in the buoyancy and release profiles of the drug. CONCLUSION: From this study, it can be concluded that the gastro-retentive diltiazem hydrochloride floating matrix tablet was successfully prepared and retained inside the rabbit stomach for up to 6 h and was stable under accelerated stability study.
Assuntos
Diltiazem , Comprimidos , Diltiazem/farmacocinética , Diltiazem/administração & dosagem , Diltiazem/química , Animais , Coelhos , Masculino , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacocinética , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/química , Estabilidade de Medicamentos , Química Farmacêutica/métodos , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/química , Bicarbonato de Sódio/química , Bicarbonato de Sódio/farmacocinéticaRESUMO
In this study, we investigated the formulation of stable solid dispersions to enhance the bioavailability of olaparib (OLA), a therapeutic agent for ovarian cancer and breast cancer characterized as a BCS class IV drug with low solubility and low permeability. Various polymers were screened based on solubility tests, and OLA-loaded solid dispersions were prepared using spray drying. The physicochemical properties of these dispersions were investigated via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform Infrared Spectroscopy (FT-IR). Subsequent dissolution tests, along with assessments of morphological and crystallinity changes in aqueous solutions, led to the selection of a hypromellose (HPMC)-based OLA solid dispersion as the optimal formulation. HPMC was effective at maintaining the supersaturation of OLA in aqueous solutions and exhibited a stable amorphous state without recrystallization. In an in vivo study, this HPMC-based OLA solid dispersion significantly enhanced bioavailability, increasing AUC0-24 by 4.19-fold and Cmax by more than 10.68-fold compared to OLA drug powder (crystalline OLA). Our results highlight the effectiveness of HPMC-based solid dispersions in enhancing the oral bioavailability of OLA and suggest that they could be an effective tool for the development of oral drug formulations.
RESUMO
The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.
Assuntos
Administração Intranasal , Epilepsia , Géis , Mucosa Nasal , Triterpenos , Animais , Administração Intranasal/métodos , Epilepsia/tratamento farmacológico , Géis/química , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Masculino , Triterpenos/administração & dosagem , Triterpenos/farmacocinética , Triterpenos/farmacologia , Triterpenos/química , Temperatura , Saponinas/administração & dosagem , Saponinas/química , Saponinas/farmacologia , Saponinas/farmacocinética , Química Farmacêutica/métodos , Disponibilidade Biológica , Ratos , Poloxâmero/química , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Anticonvulsivantes/químicaRESUMO
The demand for gluten-free products has increased due to improved diagnoses and awareness of gluten-related issues. This study investigated the effect of HPMC, psyllium, and xanthan gum in gluten-free bread formulations. Three tests were conducted, varying the amount of these ingredients: in the first formulation, the amount of HPMC was increased to 4.4 g/100 g of flour and starch; in the second, psyllium husk fiber was increased to 13.2 g/100 g of flour and starch; and in the third formulation, xanthan gum was removed. Differences were observed among the formulations: increasing HPMC reduced extrusion force without affecting bread quality; adding psyllium increased dough elasticity but also crumb gumminess and crust hardness. Eliminating xanthan gum altered dough rheology, resulting in a softer and less gummy crumb, and a less reddish color in the final bread.
RESUMO
This study aimed to examine the characteristics of H-K4M hydroxypropyl methylcellulose (HPMC) films containing nanostructured lipid carriers (NLCs) loaded with furosemide. A hot homogenization technique and an ultrasonic probe were used to prepare and reduce the size of the NLCs. Films were made using the casting technique. This study used a Box-Behnken design to evaluate the influence of three key independent variables, specifically H-K4M concentration (X1), surfactant Cremophor RH40 concentration (X2), and mixing speed (X3), on the physicochemical properties of furosemide-loaded NLCs and films. The furosemide-loaded NLCs had a particle size ranging from 54.67 to 99.13 nm, and a polydispersity index (PDI) ranging from 0.246 to 0.670. All formulations exhibited a negative zeta potential, ranging from -7.05 to -5.61 mV. The prepared films had thicknesses and weights ranging from 0.1240 to 0.2034 mm and 0.0283 to 0.0450 g, respectively. The drug content was over 85%. Film surface wettability was assessed based on the contact angle, ranging from 32.27 to 68.94°. Film tensile strength varied from 1.38 to 7.77 MPa, and their elongation at break varied from 124.19 to 170.72%. The ATR-FTIR analysis confirmed the complete incorporation of the drug in the film matrix. Therefore, the appropriate selection of values for key parameters in the synthesis of HPMC films containing drug-loaded NLCs is important in the effective development of films for medical applications.
RESUMO
This paper reports a novel α-gel formulation technology referred to as polymer complexed lamella (PCL) that uses hydroxypropyl methyl cellulose (HPMC) and glycerol. The PCL method suppressed lipid crystallization even after drying. This effect was maximized by the addition of HPMC and glycerol at high temperature. HPMC and lipids coexisted when mixed at high temperature, which decreased the mobility of HPMC, an effect that was enhanced by the strong interaction of glycerol with HPMC. These results indicate that mixing of HPMC with glycerol directly regulates the lipid structure and suppresses crystallization. PCL also maintained the effect of occlusion related to the moisturization of skin, even if the membrane was repeatedly bent such as in facial expressions.
Assuntos
Cristalização , Géis , Glicerol , Derivados da Hipromelose , Derivados da Hipromelose/química , Glicerol/química , Géis/química , Dessecação/métodos , Temperatura Alta , Lipídeos/química , Polímeros/químicaRESUMO
Starch-based films offer the advantages of biodegradability, edibility, barrier properties, flexibility, and adaptability. This study compared the physicochemical properties of starch-based films by adding raw fish collagen and hydroxypropylmethylcellulose (HPMC). The tensile properties were evaluated, and the interaction with water was analyzed. Barrier properties, such as water vapor and oxygen permeability, were examined, and optical properties, such as gloss and good internal transmittance, were evaluated. The films were evaluated as coatings on Andean blackberries (Rubus glaucus Benth) for 2 weeks at 85% RH and 25°C. The results showed that the inclusion of collagen caused a reduction in the tensile strength and elastic modulus of the films. Also, the formulation with the highest collagen concentration (F7) exhibited the lowest weight loss and water vapor permeability, also it had the highest collagen concentration and showed the highest reduction in Xw and WAC, with values of 0.048 and 0.65 g water/g dry film, respectively. According to analyzing the optical properties, F1 presented the highest bright-ness and transmittance values, with 18GU and 82 nm values, respectively. In general, the films and coatings are alternatives to traditional packaging materials to prolong the shelf life of these fruits.
Assuntos
Colágeno , Derivados da Hipromelose , Permeabilidade , Rubus , Amido , Resistência à Tração , Colágeno/química , Rubus/química , Amido/química , Derivados da Hipromelose/química , Animais , Embalagem de Alimentos , VaporRESUMO
Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.
Assuntos
Queijo , Conservação de Alimentos , Derivados da Hipromelose , Própole , Queijo/microbiologia , Queijo/análise , Própole/química , Derivados da Hipromelose/química , Conservação de Alimentos/métodos , Fenóis/química , Fenóis/análise , Microbiologia de Alimentos , Escherichia coli/efeitos dos fármacosRESUMO
The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure.
RESUMO
Objectives: The present study focused on the formulation of mucoadhesive bilayer composite films for the treatment of periodontitis and evaluation of their physicochemical properties. Materials and Methods: The solvent casting technique was used to prepare films. The primary layer (D) was prepared with flaxseed and hydroxypropyl methylcellulose composite to sustain the release of doxycycline hyclate. The second layer (S) comprised sodium alginate and polyvinyl alcohol composite for faster release of clove oil. Both layers were combined to generate the bilayer film (B). All formulations were characterized further to obtain an optimized formulation. Results: Attenuated total reflection-Fourier transform infrared radiation results showed intactness of drug and clove oil in the presence of excipients. The pH of the films was compatible with the periodontal cavity and the thickness was suitable for inserting into the cavity. The immediate release layer showed faster disintegration and swelling. The content of clove oil was above 80%. The rate of swelling of the primary layer was slow and drug content complied with the United States Pharmacopoeia. Scanning electron microscope analysis revealed intact, non-porous and smooth films. Films exhibited better mechanical strength and bioadhesiveness. Clove oil was released from the immediate release layer within 10 min, and doxycycline hyclate release was retarded to a minimum of up to 8 h in the primary layer as well as the bilayer. Formulation also had a significant effect on both Escherichia coli and Staphylococcus aureus. Conclusion: In the current study, bilayers were successfully prepared and characterized. The optimized formulation can be effectively used for the treatment of periodontitis.
RESUMO
This research presents a selective and sensitive electrochemical biosensor for the detection of the mesenchymal-epithelial transition factor (c-MET). The biosensing is based on a modification of the SPCE (screen-printed carbon electrode) with the electrospun nanofiber containing eudragit (EU), hydroxypropyl methylcellulose (HPMC), and Zeolite imidazolate frameworks (ZIF-8) nanoparticles. EU/HPMC/ZIF-8 nanofibers have presented a high capability of electron transfer, and more active surface area than bare SPCE due to synergistic effects between EU, HPMC, and ZIF-8. On the other hand, EU/HPMC nanofibers provided high porosity, flexible structures, high specific surface area, and good mechanical strength. The presence of ZIF-8 nanoparticles improved the immobilization of anti-c-MET on the modified SPCE and also resulted in increasing the conductivity. By c-MET incubation on the modified SPCE, c-MET was connected to anti-c-MET, and consequently the electrochemical signal of [Fe(CN)6]3-/4- as the anion redox probe was reduced. In order to investigate the structural and morphological characteristics and elemental composition of electrospun nanofibers, various characterization methods including FE-SEM, XRD, FTIR, and EDS were used. Under optimum conditions with a working potential range -0.3-0.6 V (vs. Ag/AgCl), linear range (LR), correlation coefficient (R2), sensitivity, and limit of detection (LOD) were acquired at 100 fg/mL-100 ng/mL, 0.9985, 53.28 µA/cm2.dec, and 1.28 fg/mL, respectively. Moreover, the mentioned biosensor was investigated in a human plasma sample to determine c-MET and showed ideal results including reproducibility, stability, and good selectivity against other proteins.
Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanofibras , Proteínas Proto-Oncogênicas c-met , Humanos , Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imidazóis , Limite de Detecção , Estruturas Metalorgânicas/química , Nanofibras/química , Nanopartículas/química , Neoplasias/sangue , Proteínas Proto-Oncogênicas c-met/sangue , Zeolitas/químicaRESUMO
The mathematical models available in DDSolver were applied to experimental dissolution data obtained by analysing carvedilol release from hypromellose (HPMC)-based matrix tablets. Different carvedilol release profiles were generated by varying a comprehensive selection of fillers and carvedilol release modifiers in the formulation. Model fitting was conducted for the entire relevant dissolution data, as determined by using a paired t-test, and independently for dissolution data up to approximately 60% of carvedilol released. The best models were selected based on the residual sum of squares (RSS) results used as a general measure of goodness of fit, along with the utilization of various criteria for visual assessment of model fit and determination of the acceptability of estimated model parameters indicating burst release or lag time concerning experimental dissolution results and previous research. In addition, a model-dependent analysis of carvedilol release mechanisms was carried out.
RESUMO
The excessive water sensitivity of hydroxypropyl methylcellulose (HPMC) films prevent them from being used extensively. In order to overcome this limitation, superhydrophobic HPMC films were meticulously crafted through the utilization of a composite of polydimethylsiloxane (PDMS) and ball-milled rice starch, corn starch, or potato starch (RS/CS/PS) for the coating process. Initially possessing hydrophilic properties, the HPMC Film (CA = 49.3 ± 1.8°) underwent a transformative hydrophobic conversion upon the application of PDMS, resulting in a static contact angle measuring up to 103.4 ± 2.0°. Notably, the synergistic combination of PDMS-coated HPMC with ball-milled starch demonstrated exceptional superhydrophobic attributes. Particularly, the treated HPMC-based film, specifically the HP-CS-2 h film, showcased an impressive contact angle of 170.5° alongside a minimal sliding angle of 5.2°. The impact of diverse starch types and the ball milling treatment on the PDMS/starch coatings and HPMC film was thoroughly examined using scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXS), and particle size analysis. These studies demonstrated that the low surface energy and roughness required for the creation of superhydrophobic HPMC-based films were imparted by the hierarchical structure formed by the application of PDMS/ball-milled starch. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Polydimethylsiloxane (PubChem CID: 24764); Hydroxypropyl methylcellulose (PubChem CID: 671); Ethyl acetate (PubChem CID: 8857).