Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Tissue Cell ; 90: 102520, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39137536

RESUMO

Heat acclimation (HA) is found to help decrease the incidence of heat-related illnesses such as heat syncope and exertional heat stroke. However, the response of vascular endothelial cells to HA remain to be elucidated. In this study, mouse brain microvascular endothelial cells (bEnd.3), human umbilical vein endothelial cells (HUVEC), and human aortic endothelial cells (HAEC) were selected. The cells were first subjected to HA at 40 ℃ for 2 h per day for 3 days, and then subjected to heat stress at 43 ℃ for 2 h or 4 h. After heat stress, HA-pretreated cells showed a significant increase in cell viability, cell integrity, a decrease in the proportion of S phase cells, cell apoptosis, and cytoskeletal shrinkage compared with the cells without HA pretreatment. Additionally, the expression of VEGF, ICAM-1, iNOS and EPO in HA-pretreated cells significantly increased. We also presented evidence that HA upregulated HSP70 and bcl-2, while downregulated p-p53 and bax. Notably, the suppression of HSP70 expression attenuated the protective role of heat acclimation. Furthermore, HA mitigated injuries in vital organs of mice exposed to heat stress. Conclusively, these findings indicated the HA can increase the vitality of vascular endothelial cells after heat stress, partially restore the function of vascular endothelial cells, and this protective effect may be related to the upregulation of HSP70 expression.

2.
Mol Ecol ; : e17493, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132714

RESUMO

In the face of rising global temperatures, the mechanisms behind an organism's ability to acclimate to heat stress remain enigmatic. The rice leaf folder, Cnaphalocrocis medinalis, traditionally viewed as temperature-sensitive, paradoxically exhibits robust larval acclimation to heat stress. This study used the heat-acclimated strain HA39, developed through multigenerational exposure to 39°C during the larval stage, and the unacclimated strain HA27 reared at 27°C to unravel the transgenerational effects of heat acclimation and its regulatory mechanisms. Heat acclimation for larvae incurred a fitness cost in pupae when exposed to high temperature, yet a significant transgenerational effect surfaced, revealing heightened fitness benefit in pupae from HA39, even without additional heat exposure during larval recovery at 27°C. This transgenerational effect exhibited a short-term memory, diminishing after two recovery generations. Moreover, the effect correlated with increased superoxide dismutase (SOD) enzyme activity and expression levels of oxidoreductase genes, representing physiological and molecular foundations of heat acclimation. Heat-acclimated larvae displayed elevated DNA methylation levels, while pupae from HA39, in recovery generations, exhibited decreased methylation indicated by the upregulation of a demethylase gene and downregulation of two methyltransferase genes at high temperatures. In summary, heat acclimation induces DNA methylation, orchestrating heat-stress memory and influencing the expression levels of oxidoreductase genes and SOD activity. Heat-stress memory enhances the acclimation of the migratory insect pest to global warming.

3.
Heliyon ; 10(12): e33172, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984309

RESUMO

Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.

4.
Zebrafish ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007173

RESUMO

Global warming and extreme weather events pose a significant threat to global biodiversity, with rising water temperatures exerting a profound influence on fish conservation and fishery development. In this study, we used zebrafish as a model organism to explore the impact of a heat acclimation period on their survival rates. The results demonstrated that a 2-month heat acclimation period almost completely mitigated heat stress-induced mortality in zebrafish. Subsequent analysis of the surviving zebrafish revealed a predominance of hepatic mitochondria in a fission state. Remarkably, a short-term fasting regimen, which induced hepatic mitochondrial fission, mirrored the outcomes of the protective effect of heat acclimation and augmented animal survival under heat stress. Conversely, treatment with a mitochondrial fission inhibitor within the fasting group attenuated the elevated survival rate. Furthermore, zebrafish embryos subjected to brief heat acclimation also exhibited increased heat resistance, a trait diminished by a chemical intervention inhibiting mitochondrial fission. This suggests a shared mechanism for heat resistance between embryos and adult zebrafish. These findings underscore the potential use of inducing mitochondrial fission to enhance heat resistance in zebrafish, offering promise for fish biodiversity conservation in the face of global warming.

5.
Front Microbiol ; 15: 1385333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962135

RESUMO

Heat stroke (HS) is a critical condition with extremely high mortality. Heat acclimation (HA) is widely recognized as the best measure to prevent and protect against HS. Preventive administration of oral rehydration salts III (ORSIII) and probiotics have been reported to sustain intestinal function in cases of HS. This study established a rat model of HA that was treated with probiotics-based ORS (ORSP) during consecutive 21-day HA training. The results showed that HA with ORSP could attenuate HS-induced hyperthermia by regulating thermoregulatory response. We also found that HA with ORSP could significantly alleviate HS-induced multiple organ injuries. The expression levels of a series of heat-shock proteins (HSPs), including HSP90, HSP70, HSP60, and HSP40, were significantly up-regulated from the HA training. The increases in intestinal fatty acid binding protein (I-FABP) and D-Lactate typically seen during HS were decreased through HA. The representative TJ proteins including ZO-1, E-cadherin, and JAM-1 were found to be significantly down-regulated by HS, but sustained following HA. The ultrastructure of TJ was examined by TEM, which confirmed its protective effect on the intestinal barrier protection following HA. We also demonstrated that HA raised the intestinal levels of beneficial bacteria Lactobacillus and lowered those of the harmful bacteria Streptococcus through 16S rRNA gene sequencing. These findings suggest that HA with ORSP was proven to improve intestinal thermotolerance and the levels of protective gut microbiota against HS.

6.
J Integr Neurosci ; 23(6): 116, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38940089

RESUMO

BACKGROUND: The effects of heat acclimation (HA) on the hypothalamus after exertional heatstroke (EHS) and the specific mechanism have not been fully elucidated, and this study aimed to address these questions. METHODS: In the present study, rats were randomly assigned to the control, EHS, HA, or HA + EHS groups (n = 9). Hematoxylin and eosin (H&E) staining was used to examine pathology. Tandem mass tag (TMT)-based proteomic analysis was utilized to explore the impact of HA on the protein expression profile of the hypothalamus after EHS. Bioinformatics analysis was used to predict the functions of the differentially expressed proteins. The differential proteins were validated by western blotting. An enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines in the serum. RESULTS: The H&E staining (n = 5) results revealed that there were less structural changes in hypothalamus in the HA + EHS group compared with the EHS group. Proteomic analysis (n = 4) revealed that proinflammatory proteins such as argininosuccinate synthetase (ASS1), high mobility group protein B2 (HMGB2) and vimentin were evidently downregulated in the HA + EHS group. The levels of interleukin (IL)-1ß, IL-1, and IL-8 were decreased in the serum samples (n = 3) from HA + EHS rats. CONCLUSIONS: HA may alleviate hypothalamic damage caused by heat attack by inhibiting inflammatory activities, and ASS1, HMGB2 and vimentin could be candidate factors involved in the exact mechanism.


Assuntos
Golpe de Calor , Hipotálamo , Proteômica , Ratos Sprague-Dawley , Animais , Hipotálamo/metabolismo , Golpe de Calor/metabolismo , Ratos , Masculino , Esforço Físico/fisiologia , Modelos Animais de Doenças
7.
Int J Sports Physiol Perform ; 19(8): 798-808, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38862102

RESUMO

PURPOSE: To investigate the influence of shorter, more frequent rest breaks with per-cooling as an alternative heat-acclimation session on physiological, perceptual, and self-paced maximal cycling performance, compared with continuous heat exposure. METHODS: Thirteen participants completed 1 continuous and 3 intermittent-heat-exposure (IHE) maximal self-paced cycling protocols in a random order in heat (36 °C, 80% relative humidity): 1 × 60-minute exercise (CON), 3 × 20-minute exercise with 7.5-minute rest between sets (IHE-20), 4 × 15-minute exercise with 5-minute rest between sets (IHE-15), and 6 × 10-minute exercise with 3-minute rest between sets (IHE-10). Mixed-method per-cooling (crushed-ice ingestion and cooling vest) was applied during rest periods of all IHE protocols. RESULTS: Total distance completed was greater in IHE-10, IHE-15, and IHE-20 than in CON (+11%, +9%, and +8%, respectively), with no difference observed between IHE protocols. Total time spent above 38.5 °C core temperature was longer in CON compared with IHE-15 and IHE-20 (+62% and +78%, respectively) but similar to IHE-10 (+5%). Furthermore, a longer time above 38.5 °C core temperature occurred in IHE-10 versus IHE-15 and IHE-20 (+54% and +69%, respectively). Sweat loss did not differ between conditions. CONCLUSION: IHE with per-cooling may be a viable alternative heat-acclimation protocol in situations where training quality takes precedence over thermal stimulus or when both factors hold equal priority.


Assuntos
Temperatura Alta , Descanso , Humanos , Masculino , Adulto , Descanso/fisiologia , Ciclismo/fisiologia , Adulto Jovem , Fatores de Tempo , Aclimatação/fisiologia , Regulação da Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Sudorese/fisiologia , Condicionamento Físico Humano/métodos , Temperatura Corporal/fisiologia , Desempenho Atlético/fisiologia , Temperatura Baixa , Gelo
8.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 111000, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879151

RESUMO

The thermogenic capacity of brown adipose tissue (BAT) in rodents decreases with prolonged heat exposure. However, the underlying mechanisms are not well understood. In this study, Kunming mice were acclimated at 23 ± 1 °C and 33 ± 1 °C for four weeks each to examine the body heat balance and BAT alterations. Results showed that heat-acclimated Kunming mice exhibited reduced body mass and elevated body temperature. Additionally, they displayed lower resting metabolic rates, diminished non-shivering thermogenesis, and reduced BAT thermogenic function. Metabolically, there was a significant reduction in several key metabolites involved in energy metabolism in BAT, including thiamine pyrophosphate, citric acid, cis-Aconitate, isocitric acid, oxoglutaric acid, succinate, fumarate, L-Malic acid, oxaloacetate, flavin mononucleotide, nicotinamide adenine dinucleotide, and adenosine 5'-triphosphate. These findings suggest that BAT adapts to heat acclimation by regulating pathways related to pyruvate oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, which may help maintain thermal homeostasis in Kunming mice.

9.
Physiol Rep ; 12(10): e16083, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38789393

RESUMO

This study aimed to determine whether heat acclimation could induce adaptations in exercise performance, thermoregulation, and the expression of proteins associated with heat stress in the skeletal muscles of Thoroughbreds. Thirteen trained Thoroughbreds performed 3 weeks of training protocols, consisting of cantering at 90% maximal oxygen consumption (VO2max) for 2 min 2 days/week and cantering at 7 m/s for 3 min 1 day/week, followed by a 20-min walk in either a control group (CON; Wet Bulb Globe Temperature [WBGT] 12-13°C; n = 6) or a heat acclimation group (HA; WBGT 29-30°C; n = 7). Before and after heat acclimation, standardized exercise tests (SET) were conducted, cantering at 7 m/s for 90 s and at 115% VO2max until fatigue in hot conditions. Increases in run time (p = 0.0301), peak cardiac output (p = 0.0248), and peak stroke volume (p = 0.0113) were greater in HA than in CON. Pulmonary artery temperature at 7 m/s was lower in HA than in CON (p = 0.0332). The expression of heat shock protein 70 (p = 0.0201) and 90 (p = 0.0167) increased in HA, but not in CON. These results suggest that heat acclimation elicits improvements in exercise performance and thermoregulation under hot conditions, with a protective adaptation to heat stress in equine skeletal muscles.


Assuntos
Aclimatação , Proteínas de Choque Térmico HSP70 , Músculo Esquelético , Condicionamento Físico Animal , Animais , Cavalos/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Aclimatação/fisiologia , Masculino , Temperatura Alta , Regulação da Temperatura Corporal/fisiologia , Consumo de Oxigênio/fisiologia , Resposta ao Choque Térmico/fisiologia
10.
J Exp Bot ; 75(8): 2558-2573, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318976

RESUMO

Global warming is causing rapid changes in mean annual temperature and more severe drought periods. These are major contributors of forest dieback, which is becoming more frequent and widespread. In this work, we investigated how the transcriptome of Pinus radiata changed during initial heat stress response and acclimation. To this end, we generated a high-density dataset employing Illumina technology. This approach allowed us to reconstruct a needle transcriptome, defining 12 164 and 13 590 transcripts as down- and up-regulated, respectively, during a time course stress acclimation experiment. Additionally, the combination of transcriptome data with other available omics layers allowed us to determine the complex inter-related processes involved in the heat stress response from the molecular to the physiological level. Nucleolus and nucleoid activities seem to be a central core in the acclimating process, producing specific RNA isoforms and other essential elements for anterograde-retrograde stress signaling such as NAC proteins (Pra_vml_051671_1 and Pra_vml_055001_5) or helicase RVB. These mechanisms are connected by elements already known in heat stress response (redox, heat-shock proteins, or abscisic acid-related) and with others whose involvement is not so well defined such as shikimate-related, brassinosteriods, or proline proteases together with their potential regulatory elements. This work provides a first in-depth overview about molecular mechanisms underlying the heat stress response and acclimation in P. radiata.


Assuntos
Pinus , Pinus/metabolismo , Multiômica , Temperatura Alta , Aclimatação/genética , Resposta ao Choque Térmico/genética
11.
Int J Sports Physiol Perform ; 19(3): 322-327, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237571

RESUMO

BACKGROUND: Repeated exposure to heat (ie, plasma volume expansion) or altitude (ie, increase in total hemoglobin mass), in conjunction with exercise, induces hematological adaptations that enhance endurance performance in each respective environment. Recently, combining heat and altitude training has become increasingly common for athletes preparing to compete in temperate, sea-level conditions. PURPOSE: To review the physiological adaptations to training interventions combining thermal and hypoxic stimuli and summarize the implications for temperate, sea-level performance. Current Evidence: To date, research on combining heat and hypoxia has employed 2 main approaches: simultaneously combining the stressors during training or concurrently training in the heat and sleeping at altitude, sometimes with additional training in hypoxia. When environmental stimuli are combined in a training session, improvements in aerobic fitness and time-trial performance in temperate, sea-level conditions are generally similar in magnitude to those observed with heat, or altitude, training alone. Similarly, training in the heat and sleeping at altitude does not appear to provide any additional hematological or nonhematological benefits for temperate; sea-level performance relative to training in hot, hypoxic, or control conditions. CONCLUSIONS: Current research regarding combined heat and altitude interventions does not seem to indicate that it enhances temperate, sea-level performance to a greater extent than "traditional" (heat or hypoxia alone) training approaches. A major challenge in implementing combined-stressor approaches lies in the uncertainty surrounding the prescription of dosing regimens (ie, exercise and environmental stress). The potential benefits of conducting heat and altitude exposure sequentially (ie, one after the other) warrants further investigation.


Assuntos
Altitude , Temperatura Alta , Humanos , Hipóxia , Adaptação Fisiológica , Exercício Físico , Aclimatação/fisiologia
12.
J Neurol Sci ; 454: 120862, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37922826

RESUMO

The World Meteorological Organization considers a heatwave as "a period of statistically unusual hot weather persisting for a number of days and nights". Accompanying the ongoing global climate change, sharp heatwave bouts occur worldwide, growing in frequency and intensity, and beginning earlier in the season. Heatwaves exacerbate the risk of heat-related illnesses, hence human morbidity and mortality, particularly in vulnerable elderly and children. Heat-related illnesses present a continuum from normothermic (prickly heat, heat edema, heat cramps, heat tetany) to hyperthermic syndromes (from heat syncope and heat exhaustion to lethal heat stroke). Heat stroke may occur through passive heating and/or exertional exercise. "Normal sleep", such as observed in temperate conditions, is altered during heatwaves. Brisk excessive heat bouts shorten and fragment human sleep. Particularly, deep N3 sleep (formerly slow-wave sleep) and REM sleep are depleted, such as in other stressful situations. The resultant sleep loss is deleterious to cognitive performance, emotional brain function, behavior, and susceptibility to chronic health conditions and infectious diseases. Our group has previously demonstrated that sleep constitutes an adaptive mechanism during climatic heat acclimatization. In parallel, artificial heat acclimation procedures have been proposed in sports and military activities, and for the elderly. Other preventive actions should be considered, such as education and urban heat island cooling (vegetation, white paint), thus avoiding energy-hungry air conditioning.


Assuntos
Golpe de Calor , Temperatura Alta , Criança , Humanos , Idoso , Cidades , Estações do Ano , Sono
13.
Mol Plant ; 16(10): 1612-1634, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37740489

RESUMO

Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.


Assuntos
Arabidopsis , Resposta ao Choque Térmico , Resposta ao Choque Térmico/genética , Plantas , Temperatura Alta , Temperatura , Arabidopsis/metabolismo
14.
Int J Sports Physiol Perform ; 18(9): 1053-1061, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553108

RESUMO

PURPOSE: To investigate the effects of a training camp with heat and/or hypoxia sessions on hematological and thermoregulatory adaptations. METHODS: Fifty-six elite male rugby players completed a 2-week training camp with 5 endurance and 5 repeated-sprint sessions, rugby practice, and resistance training. Players were separated into 4 groups: CAMP trained in temperate conditions at sea level, HEAT performed the endurance sessions in the heat, ALTI slept and performed the repeated sprints at altitude, and H + A was a combination of the heat and altitude groups. RESULTS: Blood volume across all groups increased by 140 mL (95%CI, 42-237; P = .006) and plasma volume by 97 mL (95%CI 28-167; P = .007) following the training camp. Plasma volume was 6.3% (0.3% to 12.4%) higher in HEAT than ALTI (P = .034) and slightly higher in HEAT than H + A (5.6% [-0.3% to 11.7%]; P = .076). Changes in hemoglobin mass were not significant (P = .176), despite a ∼1.2% increase in ALTI and H + A and a ∼0.7% decrease in CAMP and HEAT. Peak rectal temperature was lower during a postcamp heat-response test in HEAT (0.3 °C [0.1-0.5]; P = .010) and H + A (0.3 °C [0.1-0.6]; P = .005). Oxygen saturation upon waking was lower in ALTI (3% [2% to 5%]; P < .001) and H + A (4% [3% to 6%]; P < .001) than CAMP and HEAT. CONCLUSION: Although blood and plasma volume increased following the camp, sleeping at altitude impeded the increase when training in the heat and only marginally increased hemoglobin mass. Heat training induced adaptations commensurate with partial heat acclimation; however, combining heat training and altitude training and confinement during a training camp did not confer concomitant hematological adaptations.


Assuntos
Aclimatação , Rugby , Humanos , Masculino , Aclimatação/fisiologia , Adaptação Fisiológica , Hipóxia , Hemoglobinas , Temperatura Alta
15.
BMC Sports Sci Med Rehabil ; 15(1): 83, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434243

RESUMO

BACKGROUND: Heat stress during aerobic exercise training may offer an additional stimulus to improve cardiovascular function and performance in a cool-temperate environment. However, there is a paucity of information on the additive effects of high-intensity interval exercise (HIIE) and acute heat stress. We aimed to determine the effects of HIIE in combination with acute heat stress on cardiovascular function and exercise performance. METHODS: Twelve active (peak O2 consumption [VO2peak]: 47 ± 8 ml·O2/min/kg) young adults were counterbalanced to six sessions of HIIE in hot (HIIE-H, 30 ± 1 °C, 50 ± 5% relative humidity [RH]) or temperate conditions (HIIE-T, 20 ± 2 °C, 15 ± 10% RH). Resting heart rate (HR), HR variability (HRV), central (cBP) and peripheral blood pressure (pBP), peripheral mean arterial pressure (pMAP), pulse wave velocity (PWV), VO2peak, and 5-km treadmill time-trial were measured pre- and post-training. RESULTS: Resting HR and HRV were not significantly different between groups. However, expressed as percent change from baseline, cSBP (HIIE-T: + 0.9 ± 3.6 and HIIE-H: -6.6 ± 3.0%, p = 0.03) and pSBP (HIIE-T: -2.0 ± 4.6 and HIIE-H: -8.4 ± 4.7%, p = 0.04) were lower in the heat group. Post-training PWV was also significantly lower in the heat group (HIIE-T: + 0.4% and HIIE-H: -6.3%, p = 0.03). Time-trial performance improved with training when data from both groups were pooled, and estimated VO2peak was not significantly different between groups (HIIE-T: 0.7% and HIIE-H: 6.0%, p = 0.10, Cohen's d = 1.4). CONCLUSIONS: The addition of acute heat stress to HIIE elicited additive adaptations in only cardiovascular function compared to HIIE alone in active young adults in temperate conditions, thus providing evidence for its effectiveness as a strategy to amplify exercise-induced cardiovascular adaptations.

16.
Temperature (Austin) ; 10(2): 264-275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332304

RESUMO

Paralympic athletes may be at increased risk for exertional heat illness (EHI) due to reduced thermoregulatory ability as a consequence of their impairment. This study investigated the occurrence of heat-stress related symptoms and EHI, and the use of heat mitigation strategies in Paralympic athletes, both in relation to the Tokyo 2020 Paralympic Games and previous events. Paralympic athletes competing in Tokyo 2020 were invited to complete an online survey five weeks prior to the Paralympics and up to eight weeks after the Games. 107 athletes (30 [24-38] years, 52% female, 20 nationalities, 21 sports) completed the survey. 57% of respondents had previously experienced heat-stress related symptoms, while 9% had been medically diagnosed with EHI. In Tokyo, 21% experienced at least one heat-stress related symptom, while none reported an EHI. The most common symptom and EHI were, respectively, dizziness and dehydration. In preparation for Tokyo, 58% of respondents used a heat acclimation strategy, most commonly heat acclimatization, which was more than in preparation for previous events (45%; P = 0.007). Cooling strategies were used by 77% of athletes in Tokyo, compared to 66% during past events (P = 0.18). Cold towels and packs were used most commonly. Respondents reported no medically-diagnosed EHIs during the Tokyo 2020 Paralympic Games, despite the hot and humid conditions in the first seven days of competition. Heat acclimation and cooling strategies were used by the majority of athletes, with heat acclimation being adopted more often than for previous competitions.

17.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373294

RESUMO

Global warming is posing a threat to animals. As a large group of widely distributed poikilothermal animals, insects are liable to heat stress. How insects deal with heat stress is worth highlighting. Acclimation may improve the heat tolerance of insects, but the underlying mechanism remains vague. In this study, the high temperature of 39 °C was used to select the third instar larvae of the rice leaf folder Cnaphalocrocis medinalis, an important insect pest of rice, for successive generations to establish the heat-acclimated strain (HA39). The molecular mechanism of heat acclimation was explored using this strain. The HA39 larvae showed stronger tolerance to 43 °C than the unacclimated strain (HA27) persistently reared at 27 °C. The HA39 larvae upregulated a glucose dehydrogenase gene, CmGMC10, to decrease the reactive oxygen species (ROS) level and increase the survival rate under heat stress. The HA39 larvae maintained a higher activity of antioxidases than the HA27 when confronted with an exogenous oxidant. Heat acclimation decreased the H2O2 level in larvae under heat stress which was associated with the upregulation of CmGMC10. The rice leaf folder larvae may acclimate to global warming via upregulating CmGMC10 to increase the activity of antioxidases and alleviate the oxidative damage of heat stress.


Assuntos
Aquecimento Global , Mariposas , Animais , Glucose Desidrogenase , Peróxido de Hidrogênio , Larva/fisiologia , Mariposas/fisiologia , Aclimatação , Insetos
18.
Scand J Med Sci Sports ; 33(9): 1677-1689, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37322619

RESUMO

PURPOSE: Carbohydrate (CHO) intake periodization via the sleep low train low (SL-TL) diet-exercise model increases fat oxidation during exercise and may enhance endurance-training adaptation and performance. Conversely, training under environmental heat stress increases CHO oxidation, but the potential of combined SL-TL and heat stress to enhance metabolic and performance outcomes is unknown. METHODS: Twenty-three endurance-trained males were randomly assigned to either control (n = 7, CON), SL-TL (n = 8, SLTemp ) or SL-TL + heat stress (n = 8, SLHeat ) groups and prescribed identical 2-week cycling training interventions. CON and SLTemp completed all sessions at 20°C, but SLHeat at 35°C. All groups consumed matched CHO intake (6 g·kg-1 ·day-1 ) but timed differently to promote low CHO availability overnight and during morning exercise in both SL groups. Submaximal substrate utilization was assessed (at 20°C), and 30-min performance tests (at 20 and 35°C) were performed Pre-, Post-, and 1-week post-intervention (Post+1). RESULTS: SLTemp improved fat oxidation rates at 60% MAP (~66% VO2peak ) at Post+1 compared with CON (p < 0.01). Compared with SLTemp , fat oxidation rates were significantly lower in SLHeat at Post (p = 0.02) and Post+1 (p < 0.05). Compared with CON, performance was improved at Post in SLTemp in temperate conditions. Performance was not different between any groups or time points in hot conditions. CONCLUSION: SL-TL enhanced metabolic adaptation and performance compared with CON and combined SL-TL and heat stress. Additional environmental heat stress may impair positive adaptations associated with SL-TL.


Assuntos
Carboidratos da Dieta , Resistência Física , Humanos , Masculino , Exercício Físico , Dieta , Adaptação Fisiológica , Resposta ao Choque Térmico
19.
Brain Res ; 1811: 148393, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150340

RESUMO

BACKGROUND: Exertional heatstroke (EHS) is an emergency with a high mortality rate, characterized by central nervous system dysfunctions. This study aims to establish a Heat acclimation/acclimatization (HA) rat model in locomotion to recapitulate the physical state of human in severe environment of high temperature and humidity, and investigate the mechanism of organism protection in HA. (2) Methods: Wistar rats were exposed to 36 °C and ran 2 h/d for 21 days, acquired thermal tolerance test was conducted to assess the thermotolerance and exercise ability. Core temperature and consumption of water and food were observed. Expression of HSP70 and HSP90 of different tissues were determined by WB. Pathological structure of brain tissue was detected with HE staining. Proteomics was used to identify the differently expressed proteins in cerebral cortex of different groups. And key molecules were identified by RT-PCR and WB. (3) Results: HA rats displayed stronger thermotolerance and exercised ability on acquired thermal tolerance test. Brain water content of HA + EHS group reduced compared with EHS group. HE staining revealed slighter brain injuries of HA + EHS group than that of EHS. Proteomics focused on cell death-related pathways and key molecules Aquaporin 4 (AQP4) related to cell edema. Identification results showed HA increased AQP4, Bcl-xl, ratio of p-Akt/AKT and Bcl-xl/Bax, down-regulated Cleaved Caspase-3. (4) Conclusions: This HA model can ameliorate brain injury of EHS by reducing cerebral edema and cell apoptosis, offering experimental evidence for EHS prophylaxis.


Assuntos
Lesões Encefálicas , Golpe de Calor , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Resposta ao Choque Térmico , Aclimatação/fisiologia , Exercício Físico/fisiologia
20.
Eur J Sport Sci ; 23(8): 1509-1517, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939844

RESUMO

Wearable temperature sensors offer the potential to overcome several limitations associated with current laboratory- and field-based methods for core temperature assessment; however, their ability to provide accurate data at elevated core temperatures (Tc) has been questioned. Therefore, this investigation aimed to determine the concurrent validity of a wearable temperature sensor (CORE) compared to a reference telemetric temperature pill (BodyCAP) during a team-sport heat training camp prior to the 2020 Olympic Games. Female field hockey players (n = 19) in the Australian national squad completed 4 sessions in hot conditions where their temperature was monitored via CORE and BodyCAP. Concurrent validity of the wearable CORE device was determined with reference to the ingested BodyCAP pill. Lin's Concordance Correlation Coefficients determined there was "poor" agreement between devices during all sessions. Mean bias demonstrated that CORE underestimated Tc in all sessions (-0.06°C to -0.34°C), with wide mean 95% confidence intervals (±0.35°C to ±0.56°C). Locally estimated scatterplot smoothing regression lines illustrated a non-linearity of error, with greater underestimation of Tc by the CORE device, as Tc increased. The two devices disagreed more than ±0.3°C for 41-60% of all data samples in each session. Our findings do not support the use of the CORE device as a valid alternative to telemetric temperature pills for Tc assessment, particularly during exercise in hot conditions where elevated Tc are expected.


The CORE wearable sensor is not a valid alternative to telemetric temperature pills for Tc assessment, particularly during exercise in hot conditions where elevated Tc are expected.Compared to reference Tc data provided by a validated, ingestible telemetric temperature pill, the CORE device demonstrated "poor" agreement between devices during all sessions in this investigation.There was a non-linear bias which tended to underestimate Tc to a greater extent as Tc increased (but with wide confidence intervals), with 41-60% of all data exceeding a threshold error of ±0.3°C.


Assuntos
Temperatura Corporal , Hóquei , Feminino , Humanos , Temperatura , Temperatura Alta , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA