Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(8): 12880-12887, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34338519

RESUMO

Vesicles enriched in certain negatively charged lipids, such as phosphatidylserine and PIP2, are known to undergo fusion in the presence of calcium ions without assistance from protein assemblies. Other lipids do not exhibit this propensity, even if they are negatively charged. Using our recently developed methodology, we extract elastic properties of a representative set of lipids. This allows us to trace the origin of lipid-calcium selectivity in membrane fusion to the formation of lipid clusters with long-range correlations that induce negative curvature on the membrane surface. Furthermore, the clusters generate lateral tension in the headgroup region at the membrane surface, concomitantly also stabilizing negative Gaussian curvature. Finally, calcium binding also reduces the orientational polarization of water around the membrane head groups, potentially reducing the hydration force acting between membranes. Binding calcium only weakly increases membrane bending rigidity and tilt moduli, in agreement with experiments. We show how the combined effects of calcium binding to membranes lower the barriers along the fusion pathway that lead to the formation of the fusion stalk as well as the fusion pore.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Bicamadas Lipídicas/química , Cálcio/química , Água/química , Proteínas
2.
Front Mol Biosci ; 7: 139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850949

RESUMO

Both natural as well as artificial vesicles are of tremendous interest in biology and nanomedicine. Small vesicles (<200 nm) perform essential functions in cell biology and artificial vesicles (liposomes) are used as drug delivery vehicles. Atomic Force Microscopy (AFM) is a powerful technique to study the structural properties of these vesicles. AFM is a well-established technique for imaging at nanometer resolution and for mechanical measurements under physiological conditions. Here, we describe the procedure of AFM imaging and force spectroscopy on small vesicles. We discuss how to image vesicles with minimal structural disturbance, and how to analyze the data for accurate size and shape measurements. In addition, we describe the procedure for performing nanoindentations on vesicles and the subsequent data analysis including mechanical models used for data interpretation.

3.
Traffic ; 19(5): 328-335, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437294

RESUMO

It is now widely accepted that dynamin-mediated fission is a fundamentally mechanical process: dynamin undergoes a GTP-dependent conformational change, constricting the neck between two compartments, somehow inducing their fission. However, the exact connection between dynamin's conformational change and the scission of the neck is still unclear. In this paper, we re-evaluate the suggestion that a change in the pitch or radius of dynamin's helical geometry drives the lipid bilayer through a mechanical instability, similar to a well-known phenomenon occurring in soap films. We find that, contrary to previous claims, there is no such instability. This lends credence to an alternative model, in which dynamin drives the membrane up an energy barrier, allowing thermal fluctuations to take it into the hemifission state.


Assuntos
Membrana Celular/química , Dinaminas/química , Modelos Teóricos , Animais , Membrana Celular/metabolismo , Dinaminas/metabolismo , Humanos , Propriedades de Superfície
4.
BMC Bioinformatics ; 17: 161, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27071656

RESUMO

BACKGROUND: The importance of the material properties of membranes for diverse cellular processes is well established. Notably, the elastic properties of the membrane, which depend on its composition, can directly influence membrane reshaping and fusion processes as well as the organisation and function of membrane proteins. Determining these properties is therefore key for a mechanistic understanding of how the cell functions. RESULTS: We have developed a method to determine the bending rigidity and tilt modulus, for lipidic assemblies of arbitrary lipid composition and shape, from molecular dynamics simulations. The method extracts the elastic moduli from the distributions of microscopic tilts and splays of the lipid components. We present here an open source implementation of the method as a set of Python modules using the computational framework OpenStructure. These modules offer diverse algorithms typically used in the calculatation the elastic moduli, including routines to align MD trajectories of complex lipidic systems, to determine the water/lipid interface, to calculate lipid tilts and splays, as well as to fit the corresponding distributions to extract the elastic properties. We detail the implementation of the method and give several examples of how to use the modules in specific cases. CONCLUSIONS: The method presented here is, to our knowledge, the only available computational approach allowing to quantify the elastic properties of lipidic assemblies of arbitrary shape and composition (including lipid mixtures). The implementation as python modules offers flexibility, which has already allowed the method to be applied to diverse lipid assembly types, ranging from bilayers in the liquid ordered and disordered phases to a study of the inverted-hexagonal phase, and with different force-fields (both all-atom and coarse grained representations). The modules are freely available through GitHub at https://github.com/njohner/ost_pymodules/ while OpenStructure can be obtained at http://www.openstructure.org .


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Algoritmos , Proteínas de Membrana/química , Modelos Teóricos , Software , Água
5.
Chem Phys Lipids ; 185: 11-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24835737

RESUMO

A fluid lipid membrane transmits stresses and torques that are fully determined by its geometry. They can be described by a stress- and torque-tensor, respectively, which yield the force or torque per length through any curve drawn on the membrane's surface. In the absence of external forces or torques the surface divergence of these tensors vanishes, revealing them as conserved quantities of the underlying Euler-Lagrange equation for the membrane's shape. This review provides a comprehensive introduction into these concepts without assuming the reader's familiarity with differential geometry, which instead will be developed as needed, relying on little more than vector calculus. The Helfrich Hamiltonian is then introduced and discussed in some depth. By expressing the quest for the energy-minimizing shape as a functional variation problem subject to geometric constraints, as proposed by Guven (2004), stress- and torque-tensors naturally emerge, and their connection to the shape equation becomes evident. How to reason with both tensors is then illustrated with a number of simple examples, after which this review concludes with four more sophisticated applications: boundary conditions for adhering membranes, corrections to the classical micropipette aspiration equation, membrane buckling, and membrane mediated interactions.


Assuntos
Membrana Celular/química , Fluidez de Membrana , Estresse Mecânico , Fenômenos Biomecânicos , Modelos Moleculares , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA