RESUMO
Two new 1,10-seco-eudesmanolides (1 and 2) were isolated from the flowers of Inula japonica together with two eudesmanolide analogs (3 and 4) and two monoterpene derivatives (5 and 6). Their structures were established on the basis of detailed spectroscopic analyses and electronic circular dichroism data. All isolates were evaluated for their antiproliferative activities against human hepatocarcinoma HepG2 and SMMC-7721 cells. Japonipene B (3) exhibited the most potent effect with the IC50 values of 14.60±1.62 and 22.06±1.34â µM against HepG2 and SMMC-7721 cells, respectively. Furthermore, japonipene B (3) showed significant efficacies of arresting the cell cycle at the S/G2-M stages, inducing mitochondria-mediated apoptosis, and inhibiting cell migration in HepG2 cells.
Assuntos
Antineoplásicos , Inula , Humanos , Inula/química , Terpenos/farmacologia , Terpenos/análise , Estrutura Molecular , Flores/químicaRESUMO
ß-lactams are the most prescribed class of antibiotics due to their potent, broad-spectrum antimicrobial activities. However, alarming rates of antimicrobial resistance now threaten the clinical relevance of these drugs, especially for the carbapenem-resistant Enterobacterales expressing metallo-ß-lactamases (MBLs). Antimicrobial agents that specifically target these enzymes to restore the efficacy of last resort ß-lactam drugs, that is, carbapenems, are therefore desperately needed. Herein, we present a cyclic zinc chelator covalently attached to a ß-lactam scaffold (cephalosporin), that is, BP1. Observations from in vitro assays (with seven MBL expressing bacteria from different geographies) have indicated that BP1 restored the efficacy of meropenem to ≤ 0.5 mg/L, with sterilizing activity occurring from 8 h postinoculation. Furthermore, BP1 was nontoxic against human hepatocarcinoma cells (IC50 > 1000 mg/L) and exhibited a potency of (Kiapp) 24.8 and 97.4 µM against Verona integron-encoded MBL (VIM-2) and New Delhi metallo ß-lactamase (NDM-1), respectively. There was no inhibition observed from BP1 with the human zinc-containing enzyme glyoxylase II up to 500 µM. Preliminary molecular docking of BP1 with NDM-1 and VIM-2 sheds light on BP1's mode of action. In Klebsiella pneumoniae NDM infected mice, BP1 coadministered with meropenem was efficacious in reducing the bacterial load by >3 log10 units' postinfection. The findings herein propose a favorable therapeutic combination strategy that restores the activity of the carbapenem antibiotic class and complements the few MBL inhibitors under development, with the ultimate goal of curbing antimicrobial resistance.
Assuntos
Carbapenêmicos , Inibidores de beta-Lactamases , Animais , Humanos , Camundongos , Carbapenêmicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Meropeném/farmacologia , Lactamas , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Monobactamas , Zinco/farmacologiaRESUMO
Background and Aim: The crocodile is a model for studying relevant sources of environmental contamination. They were determined an appropriate biomonitoring species for various toxins. The cytosolic and microsomal fraction of crocodiles plays a role in detoxifying xenobiotics. Cytochrome P450 1A2 (CYP1A2) metabolizes aflatoxin B1 (AFB1) to aflatoxin M1, while glutathione-S-transferase (GST) catalyzes carcinogenic agents. This study aimed to investigate the GST activity in various organs of Crocodylus siamensis. Further, the fate of microsomal and cytosolic fractions from various crocodile organs against AFB1-induced apoptosis in human hepatocarcinoma (HepG2) cells was investigated. Materials and Methods: The liver, lungs, intestines, and kidneys tissues from a 3-year-old crocodile (C. siamensis) (n=5) were collected. The cytosolic and microsomal fraction of all tissues was extracted, and protein concentrations were measured with a spectrophotometer. Subsequently, a comparison of GST activity from various organs was carried out by spectrophotometry, and the protective effects of CYP450 and GST activity from various crocodile organs were studied. In vitro AFB1-induced apoptosis in HepG2 cells was detected by reverse transcription-quantitative polymerase chain reaction. Comparisons between the metabolisms of the detoxification enzyme in organs were tested using the Kruskal-Wallis one-way analysis of variance and Dunn's multiple comparison tests. All kinetic parameters were analyzed using GraphPad Prism software version 5.01 (GraphPad Software Inc., San Diego, USA). Results: Total GST activity in the liver was significantly higher than in the kidneys, intestines, and lungs (p<0.05, respectively). The highest GST pi (GSTP) activity was found in the liver, while the highest GST alpha-isoform activity was in the crocodile lung. The kinetics of total GST and GST mu activity in the liver had the highest velocity compared to other organs. In contrast, the kinetics of GSTP enzyme activity was the highest in the intestine. The in vitro study of microsome and cytosol extract against apoptosis induced by AFB1 revealed that the level of messenger RNA expression of the Bax and Bad genes of HepG2 cells decreased in the treatment group in a combination of cytosolic and microsomal fractions of the crocodile liver but not for Bcl-2. Interestingly, the downregulated expression of Bax and Bad genes was also found in the microsome and cytosol of crocodile kidneys. Conclusion: The crocodile liver revealed very effective GST activity and expression of the highest kinetic velocity compared to other organs. The combination of liver microsomal and cytosolic fractions could be used to prevent cell apoptosis induced by AFB1. However, further study of the molecular approaches to enzyme activity and apoptosis prevention mechanisms should be carried out.
RESUMO
Lactic acid bacteria can provide benefits to human beings and transform phenolic substances to improve their potential functionality. It was of interest to develop black barley as a carrier of probiotics and nutraceutical supplement rich in more antioxidants. Due to fermentation, bacterial counting and free phenolic content in black barley increased to 9.54 ± 0.22 log cfu/mL and 5.61 ± 0.02 mg GAE/mL, respectively. Eleven phenolic compounds, including nine isoflavones and two nitrogenous compounds were characterized using UPLC-QTOF-MS, among which epicatechin, hordatine, and pelargonidin aglycone were largely enriched. Moreover, free phenolic extracts from fermented barley (F-BPE) played a greater role in scavenging DPPH radicals, reducing Fe3+ to Fe2+, and increasing oxygen radical absorbance capacity, compared phenolic extracts from unfermented barley [UF-BPE (1.94-, 1.71-, and 1.35-fold at maximum for F-BPE vs. UF-BPE, respectively)]. In hepatocarcinoma cells, F-BPE also better inhibited ROS production and improved cell viability, cell membrane integrity, SOD activity, and non-enzymatic antioxidant GSH redox status (2.85-, 3.28-, 2.05-, 6.42-, and 3.99-fold at maximum for F-BPE vs. UF-BPE, respectively).
RESUMO
This study aimed to investigate the inhibitory effect of EM-2, a natural active monomer purified from Elephantopusmollis H.B.K., on the proliferation of human hepatocellular carcinoma cells and the molecular mechanism involved. The results from the MTT assay revealed that EM-2 significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) cells in a dose-dependent manner but exhibited less cytotoxicity to the normal liver epithelial cell line LO2. EdU staining and colony formation assays further confirmed the inhibitory effect of EM-2 on the proliferation of Huh-7 hepatocellular carcinoma cells. According to the RNA sequencing and KEGG enrichment analysis results, EM-2 markedly activated the MAPK pathway in Huh-7 cells, and the results of Western blotting further indicated that EM-2 could activate the ERK and JNK pathways. Meanwhile, EM-2 induced apoptosis in a dose-dependent manner and G2/M phase arrest in Huh-7 cells, which could be partially reversed when treated with SP600125, a JNK inhibitor. Further study indicated that EM-2 induced endoplasmic reticulum stress and blocked autophagic flux in Huh-7 cells by inhibiting autophagy-induced lysosome maturation. Inhibition of autophagy by bafilomycin A1 could reduce cell viability and increase the sensitivity of Huh-7 cells to EM-2. In conclusion, our findings revealed that EM-2 not only promoted G2/M phase arrest and activated ER stress but also induced apoptosis by activating the JNK pathway and blocked autophagic flux by inhibiting autolysosome maturation in Huh-7 hepatocellular carcinoma cells. Therefore, EM-2 is a potential therapeutic drug with promising antitumor effects against hepatocellular carcinoma and fewer side effects.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Lactonas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Sesquiterpenos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacosRESUMO
Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long non-coding RNA transcribed from the antisense strand of protein coding gene AFAP1, has attracted attention in cancer research. Despite, its biological function and regulatory mechanism in hepatocellular carcinoma still unknown. The present study revealed AFAP1-AS1 mediated hepatocarcinoma progression through targeting CRKL. The bidirectional interaction of AFAP1-AS1 and oncogenic protein CRKL, and the deregulation of AFAP1-AS1 effects on Ras, MEK and c-Jun activities were investigated in depth. AFAP1-AS1 was upregulated in surgical tumorous tissues from hepatocarcinoma patients compared with the paired paracancerous non-tumor liver tissues, and in hepatocarcinoma Huh7, HCCLM3 and HepG2 cell lines compared with LO2, a normal liver cell line. AFAP1-AS1 knockdown noticeably suppressed the proliferative, migratory and invasive properties, and the epithelial-mesenchymal transition (EMT) process of HepG2 and HCCLM3 through upregulating E-cadherin and downregulating N-cadherin and vimentin. CRKL knockdown reduced AFAP1-AS1 expression levels in HepG2 and HCCLM3 cells. AFAP1-AS1 suppression impaired CRKL expression in HepG2 and HCCLM3. AFAP1-AS1 level change was positively correlated with the expression level changes of Ras, MEK and c-Jun in mediating the invasiveness of hepatocarcinoma cells. Current work demonstrated AFAP1-AS1 to be an applicable progression indicator of hepatocarcinoma. AFAP1-AS1 probably promotes the proliferation, EMT progression and metastasis of hepatocarcinoma cells via CRKL mediated Ras/MEK/c-Jun and cadherin/vimentin signaling pathways. AFAP1-AS1-CRKL bidirectional feedback signaling is worthy of further study on the monitoring, diagnosis and treatment of cancers.
RESUMO
Transmembrane protein integrins play a key role in cell adhesion. Cell-biomaterial interactions are affected by integrin expression and conformation, which are actively controlled by cells. Although integrin structure and function have been studied in detail, quantitative analyses of integrin-mediated cell-biomaterial interactions are still scarce. Here, we have used atomic force spectroscopy to study how integrin distribution and activation (via intracellular mechanisms in living cells or by divalent cations) affect the interaction of human pluripotent stem cells (WA07) and human hepatocarcinoma cells (HepG2) with promising biomaterials -human recombinant laminin-521 (LN-521) and cellulose nanofibrils (CNF). Cell adhesion to LN-521-coated probes was remarkably influenced by cell viability, divalent cations, and integrin density in WA07 colonies, indicating that specific bonds between LN-521 and activated integrins play a significant role in the interactions between LN-521 and HepG2 and WA07 cells. In contrast, the interactions between CNF and cells were nonspecific and not influenced by cell viability or the presence of divalent cations. These results shed light on the underlying mechanisms of cell adhesion, with direct impact on cell culture and tissue engineering applications.
RESUMO
Spheroid culture is a widely used three-dimensional culture technology that simulates the three-dimensional structure of tumors in vivo and has been considered a good model for tumor research. However, current commercialized spheroid culture tools have the shortcomings of high cost or relatively poor spheroid-forming results for some special cells. To solve such problems, we designed a 3D printed, reusable, stamp-like resin mold that could shape microstructures for spheroid culture of tumor cells on the surface of agarose substrate in a 96-well plate. We applied this homemade three-dimensional culture tool in spheroid formation for hepatocellular carcinoma cells. The experimental data show that the effect of spheroid culture on four hepatocellular carcinoma cell lines in our homemade spheroid culture plate is better than that of the commercialized ultralow attachment spheroid culture plate, and compared to two-dimensional culture, three-dimensional culture improves cell functions. In addition, the drug-sensitive test based on patient-derived hepatocellular carcinoma cells showed a different pattern between spheroid and two-dimensional cultures. In conclusion, our spheroid culture tool is characterized by its low cost, reusability, low cell consumption, convenience in medium exchange, and good effect of spheroid formation, suggesting that this technique could be widely used in individual treatment and high-throughput drug screening.
RESUMO
Previous studies have shown that arctigenin is a promising chemopreventive or therapeutic agent against various cancers. However, less is known about anticancer activity of 3'-desmethylarctigenin (3'-DMAG), which is a biotransformed product from arctigenin or arctin. In this study, we compared the anticancer activity of 3'-DMAG with its parent compound arctigenin and demonstrated that 3'-DMAG exerted a more potent inhibitory effect on HepG2 cells than arctigenin. Mechanistically, reactive oxygen species generation played an apical role in 3'-DMAG-induced G2/M cell cycle arrest and apoptosis in HepG2 cells. Furthermore, the Chk2-Cdc25c-Cdc2-cyclin B1 cascade was found to contribute to the cell cycle arrest, whereas the activation of mitochondrial pathway was involved in the cell apoptosis by 3'-DMAG. Additionally, a mouse xenograft hepatocellular carcinoma model was used to evaluate the antitumor effect of 3'-DMAG in vivo, and the results indicated that 3'-DMAG treatment significantly inhibited tumor growth without apparent toxicity. Taken together, 3'-DMAG is highly effective against liver cancer both in vitro and in vivo. The findings of the present study suggest that this compound deserves to be further investigated for its potential anticancer activity.
Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Hepáticas/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Our previous study has discovered the positive effect of phospholipase Cγ 2 (PLCγ2) on the growth of hepatocarcinoma cells; however, the underlying mechanism is far from being understood. For this reason, this study attempts to identify the differently expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) in PLCγ2-overexpressing hepatocarcinoma cells. The results showed that totally 596 differently-expressed genes (DEGs) were identified in PLCγ2-expressed cells, including 314 upregulated and 282 downregulated ones; according to gene ontology analysis, these DEGs were involved in different cellular processes. Concurrently, 34 differently-expressed miRNAs (DEMs) were also detected in PLCγ2-expressing hepatocarcinoma cells. Moreover, the integrative analysis of miRNA and mRNA expression profiles identified the potential regulatory network linked to hepatocarcinoma-related biological processes, including metabolic activity, gene expression, cell cycle, cell migration, and so on. To our knowledge, it is the first study on the effect of PLCγ2 on miRNA and mRNA expressions in hepatocarcinoma cells, and the findings provide new insights into the mechanism supporting the growth-promoting effect of PLCγ2 in hepatocarcinoma cells.
Assuntos
Neoplasias Hepáticas/genética , MicroRNAs/genética , Fosfolipase C gama/genética , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/patologia , Mapas de Interação de Proteínas/genética , Ratos , Análise de Sequência de RNA , TranscriptomaRESUMO
Extracellular vesicles (EVs) are involved in intercellular communication during carcinogenesis, and cancer cells are able to secrete EVs, in particular exosomes containing molecules, that can be transferred to recipient cells to induce pathological processes and significant modifications, as metastasis, increase of proliferation, and carcinogenesis evolution. FZD proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in carcinogenesis of the gastroenteric tract. Here, a still unknown role of Frizzled 10 (FZD10) protein was identified. In particular, the presence of FZD10 and FZD10-mRNA in exosomes extracted from culture medium of the untreated colorectal, gastric, hepatic, and cholangio cancer cell lines, was detected. A substantial reduction in the FZD10 and FZD10-mRNA level was achieved in FZD10-mRNA silenced cells and in their corresponding exosomes. Concomitantly, a significant decrease in viability of the silenced cells compared to their respective controls was observed. Notably, the incubation of silenced cells with the exosomes extracted from culture medium of the same untreated cells promoted the restoration of the cell viability and, also, of the FZD10 and FZD10-mRNA level, thus indicating that the FZD10 and FZD10-mRNA delivering exosomes may be potential messengers of cancer reactivation and play an active role in long-distance metastatization.
Assuntos
Exossomos/metabolismo , Receptores Frizzled/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Imunofluorescência , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
INTRODUCTION: Nanoparticles (NPs) are used in numerous products in technical fields and biomedicine; their potential adverse effects have to be considered in order to achieve safe applications. Besides their distribution in tissues, organs, and cellular localization, their impact and penetration during the process of tissue formation occurring in vivo during liver regeneration are critical steps for establishment of safe nanomaterials. MATERIALS AND METHODS: In this study, 3D cell culture of human hepatocarcinoma cells (HepG2) was used to generate cellular spheroids, serving as in vitro liver microtissues. In order to determine their differential distribution and penetration depth in HepG2 spheroids, SiO2 NPs were applied either during or after spheroid formation. The NP penetration was comprehensively studied using confocal laser scanning microscopy and scanning electron microscopy. RESULTS: Spheroids were exposed to 100 µg mL-1 SiO2 NPs either at the beginning of spheroid formation, or during or after formation of spheroids. Microscopy analyses revealed that NP penetration into the spheroid is limited. During and after spheroid formation, SiO2 NPs penetrated about 20 µm into the spheroids, corresponding to about three cell layers. In contrast, because of the addition of SiO2 NPs simultaneously to cell seeding, NP agglomerates were located also in the spheroid center. Application of SiO2 NPs during the process of spheroid formation had no impact on final spheroid size. CONCLUSION: Understanding the distribution of NPs in tissues is essential for biomedical applications. The obtained results indicate that NPs show only limited penetration into already formed tissue, which is probably caused by the alteration of the tissue structure and cell packing density during the process of spheroid formation.
Assuntos
Fígado/metabolismo , Nanopartículas/química , Dióxido de Silício/química , Engenharia Tecidual/métodos , Morte Celular , Sobrevivência Celular , Fluorescência , Células Hep G2 , Humanos , Fígado/patologia , Nanopartículas/ultraestrutura , Estresse Oxidativo , Esferoides Celulares/patologiaRESUMO
OBJECTIVE: The objective of this study was to investigate the effect of Solanum nigrum polysaccharides (SNPs) on tumor growth in H22 hepatocarcinoma cells bearing mice and explore the mechanism by focusing on the regulation of the expression of caspase-3 and bcl-2. MATERIALS AND METHODS: Totally, 50 mice bearing with H22 cells were randomly divided into five groups: Model group, cyclophosphamide group (CTX, 30 mg/kg), SNP groups with low, medium, and high doses of SNP (30, 60, and 120 mg/kg). Twenty-four hours after inoculation of H22 cells, CTX or SNP were given by gavage once a day for 10 days. The growth of tumor was observed. The tumor inhibition rate, indexes of the spleen and thymus were calculated. The immunohistochemical method was used for the determination of caspase-3 and bcl-2 expression in the tumor tissue. RESULTS: SNP (30, 60, and 120 mg/kg) reduced the average tumor weight compared with that in model group in a dose-dependent manner, and the tumor inhibition rates were 37.73%, 38.24%, and 42.60%, respectively. In addition, SNP dose dependently increased the index of the thymus compared with that of the CTX group. Immunohistochemistry results showed that the protein expression of caspase-3 in SNP groups was higher, but the expression of bcl-2 was lower than that in model group in a dose-dependent manner. CONCLUSION: SNP inhibited the growth of tumor in H22-bearing mice and protected the immune organ. The mechanism underlying the inhibition of tumor might be related to the upregulation of caspase-3 and downregulation of bcl-2.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Caspase 3/metabolismo , Neoplasias/metabolismo , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Solanum nigrum/química , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polissacarídeos/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Objective: To investigate the effect of platycodin D on the radiosensitivity of human hepatoma cell lines HepG2 and SMMC-7721 and related mechanisms of action. Methods: MTT assay was used to analyze the effect of different concentrations of platycodin D with different treatment times on cell viability. The cells were pretreated with 5 µg/ml platycodin D for 24 hours followed by X-ray irradiation at different radiation doses. Colony-forming assay was used to measure the radiosensitizing effect of platycodin D on cells. The quasi-threshold dose (Dq), mean lethal dose (Do), extrapolation number (N), sensitizer enhancement ratio (SER), and survival fraction (SF) at different radiation doses were calculated, and the multi-target single-hit model was used to fit the cell survival curve according to the formula SF = l-(l-e(-D/D0))N. Flow cytometry was used to investigate the distribution of cell cycle, and Western blotting was used to measure the changes in the protein expression of phosphorylated phosphatidylinositol 3'-kinase (pPI3K), phosphorylated protein kinase (pAkt), nuclear factor-κB (NF-κB), and phosphorylated nuclear factor inhibiting protein (pIκBα). A one-way analysis of variance, the t-test, or the least significant difference test was used for statistical analysis based on the type of data. Results: Platycodin D reduced the viability of HepG2 and SMMC-7721 cells in a dose-dependent manner; the IC50 value for HepG2 cells was 24.2 ± 0.61 µg/ml at 24 hours and 7.68 ± 0.46 µg/ml at 48 hours, and that for SMMC-7721 cells was 23.8 ± 0.57 µg/ml at 24 hours and 8.63 ± 0.86 µg/mL at 48 hours. After the combined treatment with platycodin D and irradiation, there were significant reductions in Dq (P = 0.002), Do (P = 0.002), and N value (P = 0.003), the survival curve markedly shifted to the left, and SER was 1.347 ± 0.04 in HepG2 cells and 1.418 ± 0.05 in SMMC-7721 cells. In addition, platycodin D significantly inhibited the increase in the proportion of cells in G2/M phase, the increases in the protein expression of pPI3k (P = 0.002), pAkt (P = 0.003), and NF-κB (P = 0.002), and the reduction in the protein expression of pIκBα (P = 0.003). Conclusion: Platycodin D can increase the radiosensitivity of HepG2 or SMMC-7721 cells, possibly by enhancing the growth inhibition effect of irradiation and inhibiting the activation of the PI3k/Akt and NF-κB pathways.
Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular , Fosfatidilinositol 3-Quinases , Tolerância a Radiação/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , HumanosRESUMO
Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-ß-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 µg/mL of Fe3O4-NPs. Significant dose-response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.
Assuntos
Carcinoma Hepatocelular/terapia , Dano ao DNA , Hipertermia Induzida/métodos , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/uso terapêutico , Estresse Oxidativo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Adutos de DNA/análise , Adutos de DNA/genética , Células Hep G2 , Humanos , Peroxidação de Lipídeos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologiaRESUMO
Hepatoprotective Mongolian prescription II (MPII), a mixture of 18 different medicinal herbs, significantly inhibited the growth of human liver cancer cell lines Huh-7 and HepG2 in vitro with different concentrations; MPII (6mg/mL) inhibited cell proliferation by 80.48%. MPII induced apoptosis in both cell lines, which was observed by light microscopy and flow cytometry. MPII-induced apoptosis and G0/G1 cell cycle arrest were quantified by Annexin V-FITC/PI staining and flow cytometry. At the molecular level, MPII induced caspase-3, caspase-8, caspase-9, and cytochrome c gene expression. In vivo, MPII dramatically inhibited human liver tumor growth in a xenograft model in Kunming mice with no apparent cytotoxicity to the hosts. Apoptotic genes (Bcl-2 and Bax) are up-regulated, suggesting that the ratio of Bcl-2/Bax was statistically significant, indicating that the drugs had affected the expression of apoptosis genes, especially on induce apoptosis gene Bax. We also observed an attenuated effect when MPII was used in combination with chemotherapy drug 5-fluorouracil (5-FU). The mice treated with 5-FU alone did not show a concentration-dependent effect, but 5-FU in combination with MPII displayed concentration-dependent effects on liver cancer cells. Our study suggests that MPII works by inducing apoptosis and cell cycle arrest, and has the potential to be a powerful anticancer agent.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Fluoruracila/uso terapêutico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fitoterapia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Medicina Herbária , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Plantas MedicinaisRESUMO
Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 µM) and DC-TA-46 (0.5 µM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , AMP Cíclico/metabolismo , Neoplasias Hepáticas/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Piperazinas/farmacologia , Pteridinas/farmacologia , Rolipram/farmacologiaRESUMO
Tumor necrosis factor-alpha (TNF-α) has been used as an effective treatment for Hepatocellular Carcinoma, however, inducing tumor cell apoptosis by TNF-α alone is still unsatisfactory. RhoA is highly expressed in hepatocarcinoma cells and can be activated by TNF-α. The activation of RhoA directly leads to a poor prognosis of HCC. Therefore, we propose to investigate the therapeutic effect of TNF-α together with RhoA siRNA. RhoA inhibition was accomplished by constructing a recombinant adenovirus that can efficiently express RhoA siRNA in HepG2 cells. The recombinant adenovirus AdshRNA-RhoA and AdU6-control were generated by adenovirus-mediated siRNA expression system. The inhibition effects were detected by RT-PCR in addition to immunoblot to quantify the decreased levels of RhoA expression, and the therapeutic effect for HCC was demonstrated by the proliferation and apoptosis ratios of HepG2 cells. The inhibition effects of RhoA by AdshRNA-RhoA were significant at both mRNA and protein levels: the transcription of RhoA mRNA decreased by 74.46%, and the expression of protein decreased by 76.48%. The proliferation rate of HepG2 cells detected by MTT showed that a treatment of AdshRNA-RhoA and TNF-α together could strengthen the suppression ability of TNF-α to HepG2 cells, resulting in approximately 14.2% more than those treated with only TNF-α. FCA and TUNEL assays results revealed that the combined treatment can induce apoptosis in approximately 52.14%-65% of the HepG2 cells, whereas this ratio in the TNF-α-alone group was only 21.91%-32%. Our results showed that AdshRNA-RhoA can efficiently enhance the TNF-α-induced apoptosis of hepatocarcinoma cells. This method might be a useful therapeutic route in HCC and other tumors.
Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , RNA Interferente Pequeno/uso terapêutico , Terapêutica com RNAi , Fator de Necrose Tumoral alfa/genética , Proteína rhoA de Ligação ao GTP/genética , Adenoviridae/genética , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Interferente Pequeno/genéticaRESUMO
SCOPE: Glucosinolates are secondary metabolites present in Brassica vegetables. Alkenyl glucosinolates are enzymatically degraded forming nitriles or isothiocyanates, but in the presence of epithiospecifier protein, epithionitriles are released. However, studies on the occurrence of epithionitriles in Brassica food and knowledge about their biological effects are scarce. METHODS AND RESULTS: Epithionitrile formation from glucosinolates of seven Brassica vegetables was analyzed using GC-MS and HPLC-DAD. Bioactivity of synthetic and plant-derived 1-cyano-2,3-epithiopropane (CETP) - the predominant epithionitrile in Brassica vegetables - in three human hepatocellular carcinoma (HCC) cell lines and primary murine hepatocytes was also evaluated. The majority of the Brassica vegetables were producers of nitriles or epithionitriles as hydrolysis products and not of isothiocyanates. For example, Brussels sprouts and savoy cabbage contained up to 0.8 µmol CETP/g vegetable. Using formazan dye assays, concentrations of 380-1500 nM CETP were observed to inhibit the mitochondrial dehydrogenase activity of human HCC cells without impairment of cell growth. At 100-fold higher CETP concentrations, cell death was observed. Presence of plant matrix increased CETP-based toxicity. CONCLUSION: These in vitro data provide no indication that epithionitriles will severely affect human health by Brassica consumption. In contrast to isothiocyanates, no evidence of selective toxicity against HCC cells was found.
Assuntos
Apoptose/efeitos dos fármacos , Brassica/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Nitrilas/farmacologia , Propano/análogos & derivados , Compostos de Sulfidrila/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Necrose , Nitrilas/análise , Oxirredução , Extratos Vegetais/análise , Propano/análise , Propano/farmacologia , Compostos de Sulfidrila/análiseRESUMO
The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities.