Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.614
Filtrar
1.
J Cell Physiol ; : e31441, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324415

RESUMO

Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.

2.
Front Pharmacol ; 15: 1463187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290869

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and its prevalence is rapidly increasing. Antioxidants, lipid-lowering medications, and lifestyle interventions are the most commonly used treatment options for NAFLD, but their efficacy in inhibiting steatosis progression is limited and their long-term ineffectiveness and adverse effects have been widely reported. Therefore, it is important to gain a deeper understanding of the pathogenesis of NAFLD and to identify more effective therapeutic approaches. Mitochondrial homeostasis governs cellular redox biology, lipid metabolism, and cell death, all of which are crucial to control hepatic function. Recent findings have indicated that disruption of mitochondrial homeostasis occurs in the early stage of NAFLD and mitochondrial dysfunction reinforces disease progression. In this review, we summarize the physical roles of the mitochondria and describe their response and dysfunction in the context of NAFLD. We also discuss the drug targets associated with the mitochondria that are currently in the clinical trial phase of exploration. From our findings, we hope that the mitochondria may be a promising therapeutic target for the treatment of NAFLD.

3.
Cells ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273020

RESUMO

BACKGROUND: Exercise can promote sustainable protection against cold and warm liver ischemia-reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can be utilized as an alternative therapeutic strategy. METHODS: Eight-week-old mice were pretreated with ZLN005 and subjected to liver warm IRI. To establish a liver metastatic model, MC38 cancer cells (1 × 106) were injected into the spleen, followed by splenectomy and liver IRI. RESULTS: ZLN005-pretreated mice showed a significant decrease in IRI-induced tissue injury as measured by serum ALT/AST/LDH levels and tissue necrosis. ZLN005 pretreatment decreased ROS generation and cell apoptosis at the site of injury, with a significant decrease in serum pro-inflammatory cytokines, innate immune cells infiltration, and intrahepatic neutrophil extracellular trap (NET) formation. Moreover, mitochondrial mass was significantly upregulated in hepatocytes and maintained after IRI. This was confirmed in murine and human hepatocytes treated with ZLN005 in vitro under normoxic and hypoxic conditions. Additionally, ZLN005 preconditioning significantly attenuated tumor burden and increased the percentage of intratumoral cytotoxic T cells. CONCLUSIONS: Our study highlights the effective protection of ZLN005 pretreatment as a therapeutic alternative in terms of acute liver injury and tumor metastases.


Assuntos
Neoplasias Hepáticas , Fígado , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Humanos , Masculino , Apoptose/efeitos dos fármacos , Progressão da Doença , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos
4.
Regul Toxicol Pharmacol ; 153: 105708, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304112

RESUMO

Botanical supplements and herbal products are widely used by consumers for various purported health benefits, and their popularity is increasing. Some of these natural products can have adverse effects on liver function and/or interact with prescription and over-the-counter (OTC) medications. Ensuring the safety of these readily available products is a crucial public health concern; however, not all regulatory authorities require premarket safety review and/or testing. To address and discuss these and other emerging needs related to botanical safety, a symposium was held at the Society of Toxicology Annual Meeting in Salt Lake City (UT) on March 11, 2024. The symposium addressed the latest research on botanical-induced liver toxicity and botanical-drug interactions, including new approach methods to screen for toxicity, challenges in assessing the safety of botanicals, and relating human adverse events to specific products. The presentations and robust panel discussion between the speakers and audience highlighted the need for further research and collaboration to improve the safety of botanical supplements and herbal products, with the ultimate goal of protecting consumer health. Although utility of many of the modern tools presented in the symposium requires further study, the synergistic efforts of diverse experts hold promise for effective prediction and evaluation of botanical-induced hepatotoxicity and botanical-drug interaction potential.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39326942

RESUMO

The repeated dose liver micronucleus (RDLMN) assay has been sufficiently validated in terms of the numbers and types of chemicals studied. However, it remains unclear whether aging affects assay results. The OECD Test Guideline 407 (Repeated Dose 28-Day Oral Toxicity Study in Rodents) indicates that dosing should begin as soon as feasible after weaning and in any event before 9 weeks of age. Therefore, it is particularly important to determine whether there are age-related differences between 6 and 8 weeks of age at the start of dosing when considering the possibility of integrating this assay into a 4-week repeated dose general toxicity study. We evaluated the impact of the rats' age on the RDLMN assay with three chemicals: N-nitrosodipropylamine, quinoline, and carbendazim. There were no significant age-related differences for the first two chemicals, whereas a markedly higher frequency of micronucleated hepatocytes (MNHEPs) was observed in younger rats for carbendazim. However, regardless of the age of animals, micronucleus induction was detected in all three chemicals. Combined with the previous reports on clofibrate and diethylnitrosamine, we concluded that animals of any age from 6 to 8 weeks could be used in the RDLMN assay.


Assuntos
Envelhecimento , Benzimidazóis , Carbamatos , Fígado , Testes para Micronúcleos , Quinolinas , Animais , Testes para Micronúcleos/métodos , Carbamatos/toxicidade , Ratos , Quinolinas/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Benzimidazóis/toxicidade , Envelhecimento/efeitos dos fármacos , Nitrosaminas/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Ratos Sprague-Dawley , Relação Dose-Resposta a Droga
6.
mBio ; : e0261524, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329526

RESUMO

Chronic hepatitis B virus (HBV) infection remains a significant public health burden with no cure currently available. The research to cure HBV has long been hampered by the lack of immunocompetent small animal models capable of supporting HBV infection. Here, we set out to explore the feasibility of the golden Syrian hamster as an immunocompetent small rodent model for HBV infection. We first started with in vitro assessments of the HBV replication cycle in primary hamster hepatocytes (PHaHs) by adenoviral HBV (Ad-HBV) transduction. Our results demonstrated that PHaHs support HBV reverse transcription and subsequent cccDNA formation via the intracellular recycling pathway. Next, with luciferase reporter assays, we confirmed that PHaHs support the activities of all HBV major promoters. Then, we transduced PHaHs with an adenoviral vector expressing HBV receptor human Na+/taurocholate cotransporting polypeptide NTCP (Ad-huNTCP), followed by HBV inoculation. While the untransduced PHaHs did not support HBV infection, Ad-huNTCP-transduced PHaHs supported de novo cccDNA formation, viral mRNA transcription, and expression of viral antigens. We then humanized the amino acid (aa) residues of hamster NTCP (haNTCP) critical for HBV entry, aa84-87 and aa157-165, and transfected HepG2 cells with constructs expressing wild-type haNTCP and humanized-haNTCP, H84R/P87N and H84R/P87N/G157K/M160V/M165L, respectively, followed by HBV inoculation. The results showed that the humanization of H84R/P87N alone was sufficient to support HBV infection at a level comparable to that supported by huNTCP. Taken together, the above in vitro evidence supports the future direction of humanizing haNTCP for HBV infection in vivo.IMPORTANCEOne of the biggest challenges in developing an HBV cure is the lack of immunocompetent animal models susceptible to HBV infection. Developing such models in mice has been unsuccessful due to the absence of a functional HBV receptor, human NTCP (huNTCP), and the defect in supporting viral cccDNA formation. In search of alternative models, we report herein multiple lines of in vitro evidence for developing a golden Syrian hamster model for HBV infection. We demonstrate that the primary hamster hepatocytes (PHaHs) support HBV replication, transcription, and cccDNA formation, and PHaHs are susceptible to de novo HBV infection in the presence of huNTCP. Furthermore, expressing hamster NTCP with two humanized residues critical for HBV entry renders HepG2 cells permissive to HBV infection. Thus, our work lays a solid foundation for establishing a gene-edited hamster model that expresses humanized NTCP for HBV infection in vivo.

7.
Toxins (Basel) ; 16(9)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39330847

RESUMO

Acrylamide (AA) can be formed during the thermal processing of carbohydrate-rich foods. Deoxynivalenol (DON), a mycotoxin produced by Fusarium spp., contaminates many cereal-based products. In addition to potential co-exposure through a mixed diet, co-occurrence of AA and DON in thermally processed cereal-based products is also likely, posing the question of combinatory toxicological effects. In the present study, the effects of AA (0.001-3 mM) and DON (0.1-30 µM) on the cytotoxicity, gene transcription, and expression of major cytochrome P450 (CYP) enzymes were investigated in differentiated human hepatic HepaRG cells. In the chosen ratios of AA-DON (10:1; 100:1), cytotoxicity was clearly driven by DON and no overadditive effects were observed. Using quantitative real-time PCR, about twofold enhanced transcript levels of CYP1A1 were observed at low DON concentrations (0.3 and 1 µM), reflected by an increase in CYP1A activity in the EROD assay. In contrast, CYP2E1 and CYP3A4 gene transcription decreased in a concentration-dependent manner after incubation with DON (0.01-0.3 µM). Nevertheless, confocal microscopy showed comparably constant protein levels. The present study provided no indication of an induction of CYP2E1 as a critical step in AA bioactivation by co-occurrence with DON. Taken together, the combination of AA and DON showed no clear physiologically relevant interaction in HepaRG cells.


Assuntos
Acrilamida , Sobrevivência Celular , Sistema Enzimático do Citocromo P-450 , Tricotecenos , Humanos , Tricotecenos/toxicidade , Acrilamida/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia
8.
ACS Appl Mater Interfaces ; 16(38): 51411-51420, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39269915

RESUMO

Maintaining the differentiated phenotype and function of primary hepatocytes in vitro and in vivo represents a distinct challenge. Our paper describes microcapsules comprised of a bioactive polymer and overcoated with an ultrathin film as a means of maintaining the function of entrapped hepatocytes for at least two weeks. We previously demonstrated that heparin (Hep)-based microcapsules improved the function of entrapped primary hepatocytes by capturing and releasing cell-secreted inductive signals, including hepatocyte growth factor (HGF). Further enhancement of hepatic function could be gained by loading exogenous HGF into microcapsules. In this study, we demonstrate that an ultrathin coating of tannic acid (TA) further enhances endogenous HGF signaling for entrapped hepatocytes and increases by 2-fold the rate of uptake of exogenous HGF by Hep microcapsules. Hepatocytes in overcoated microcapsules exhibited better function and hepatic gene expression than in capsules without a TA coating. Our study showcases the potential application of ultrathin coatings to modulate the bioactivity of microcapsules and may enable the use of encapsulated hepatocytes for modeling drug toxicity or treating liver diseases.


Assuntos
Cápsulas , Heparina , Hepatócitos , Hepatócitos/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Cápsulas/química , Animais , Heparina/química , Heparina/farmacologia , Taninos/química , Taninos/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/química , Fator de Crescimento de Hepatócito/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Camundongos
9.
Stem Cell Res Ther ; 15(1): 278, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227908

RESUMO

BACKGROUND: The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS: Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS: IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION: In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.


Assuntos
Cirrose Hepática , Células-Tronco Mesenquimais , Proteína Wnt1 , Animais , Camundongos , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Tioacetamida
10.
Stem Cell Res Ther ; 15(1): 281, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227965

RESUMO

BACKGROUND: Primary human hepatocytes (PHHs) are highly valuable for drug-metabolism evaluation, liver disease modeling and hepatocyte transplantation. However, their availability is significantly restricted due to limited donor sources, alongside their constrained proliferation capabilities and reduced functionality when cultured in vitro. To address this challenge, we aimed to develop a novel method to efficiently expand PHHs in vitro without a loss of function. METHODS: By mimicking the in vivo liver regeneration route, we developed a two-step strategy involving the de-differentiation/expansion and subsequent maturation of PHHs to generate abundant functional hepatocytes in vitro. Initially, we applied SiPer, a prediction algorithm, to identify candidate small molecules capable of activating liver regenerative transcription factors, thereby formulating a novel hepatic expansion medium to de-differentiate PHHs into proliferative human hepatic progenitor-like cells (ProHPLCs). These ProHPLCs were then re-differentiated into functionally mature hepatocytes using a new hepatocyte maturation condition. Additionally, we investigated the underlying mechanism of PHHs expansion under our new conditions. RESULTS: The novel hepatic expansion medium containing hydrocortisone facilitated the de-differentiation of PHHs into ProHPLCs, which exhibited key hepatic progenitor characteristics and demonstrated a marked increase in proliferation capacity compared to cells cultivated in previously established expansion conditions. Remarkably, these subsequent matured hepatocytes rivaled PHHs in terms of transcriptome profiles, drug metabolizing activities and in vivo engraftment capabilities. Importantly, our findings suggest that the enhanced expansion of PHHs by hydrocortisone may be mediated through the PPARα signaling pathway and regenerative transcription factors. CONCLUSIONS: This study presents a two-step strategy that initially induces PHHs into a proliferative state (ProHPLCs) to ensure sufficient cell quantity, followed by the maturation of ProHPLCs into fully functional hepatocytes to guarantee optimal cell quality. This approach offers a promising means of producing large numbers of seeding cells for hepatocyte-based applications.


Assuntos
Diferenciação Celular , Hepatócitos , Regeneração Hepática , Humanos , Hepatócitos/metabolismo , Hepatócitos/citologia , Proliferação de Células , Células Cultivadas , Animais , Técnicas de Cultura de Células/métodos
11.
J Anim Sci Biotechnol ; 15(1): 116, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218924

RESUMO

BACKGROUND: Methionine (Met) is the only sulfur-containing amino acid among animal essential amino acids, and methionine deficiency (MD) causes tissue damage and cell death in animals. The common modes of cell death include apoptosis, autophagy, pyroptosis, necroptosis. However, the studies about the major modes of cell death caused by MD have not been reported, which worth further study. METHODS: Primary hepatocytes from grass carp were isolated and treated with different doses of Met (0, 0.5, 1, 1.5, 2, 2.5 mmol/L) to examine the expression of apoptosis, pyroptosis, autophagy and necroptosis-related proteins. Based on this, we subsequently modeled pyroptosis using lipopolysaccharides and nigericin sodium salt, then autophagy inhibitors chloroquine (CQ), AMP-activated protein kinase (AMPK) inhibitors compound C (CC) and reactive oxygen species (ROS) scavengers N-acetyl-L-cysteine (NAC) were further used to examine the expression of proteins related to pyroptosis, autophagy and AMPK pathway in MD-treated cells respectively. RESULTS: MD up-regulated B-cell lymphoma protein 2 (Bax), microtubule-associated protein 1 light chain 3 II (LC3 II), and down-regulated the protein expression levels of B-cell lymphoma-2 (Bcl-2), sequestosome 1 (p62), cleaved-caspase-1, cleaved-interleukin (IL)-1ß, and receptor-interacting protein kinase (RIP) 1 in hepatocytes, while it did not significantly affect RIP3. In addition, MD significantly increased the protein expression of liver kinase B1 (LKB1), p-AMPK, and Unc-51-like kinase 1 (ULK1) without significant effect on p-target of rapamycin. Subsequently, the use of CQ increased the protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved-caspase-1, and cleaved-IL-1ß inhibited by MD; the use of CC significantly decreased the protein expression of MD-induced LC3 II and increased the protein expression of MD-suppressed p62; then the use of NAC decreased the MD-induced p-AMPK protein expression. CONCLUSION: MD promoted autophagy and apoptosis, but inhibited pyroptosis and necroptosis. MD inhibited pyroptosis may be related regarding the promotion of autophagy. MD activated AMPK by inducing ROS production which in turn promoted autophagy. These results could provide partial theoretical basis for the possible mechanisms of Met in ensuring the normal structure and function of animal organs. Furthermore, ferroptosis is closely related to redox states, it is worth investigating whether MD affects ferroptosis in hepatocytes.

12.
Tissue Cell ; 91: 102562, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39276486

RESUMO

Tramadol is a commonly used drug to relieve pain and avoid premature ejaculation in males with hepatotoxic effects, and 6-chogaol has potent anti-inflammatory and hepatoprotective properties. The work impetus is probing the hepatoprotective mechanisms of 6-chogaol against tramadol hepatoxicity. Twenty adult male rats were enrolled to obtain four equal groups [control group (G1), 6-chogaol group (G2), tramadol group (G3), and 6-chogaol+tramadol group (G4)]. Liver specimens were excised and processed to evaluate hepatocyte injury through histopathological (HP), immunohistochemical (IHC), flow cytometry, and biochemical investigations. The HP study exhibited hepatic injury in G3 hepatocytes (inflammatory cell infiltration, hepatic fibrosis, and disturbed liver structure). The IHC study showed a significant rise in caspase-3 and reduced PCNA immuno-expression (IE). Likewise, the flow cytometry and biochemical experiments exhibited a substantial elevation of apoptotic hepatocytes and the serum levels of IL-1ß, IL-6, TNF-α, ALP, ALT, and AST in G3. In contrast, G4 rats significantly improved in all HP, IHC, flow cytometry, and biochemical parameters. Collectively, tramadol intake exerted harmful toxic effects on hepatocytes, whereas 6-Shogaol hampered these changes and served as a natural hepatoprotective agent. Therefore, we advise concurrent intake of 6-Shogaol supplement with tramadol to preserve the integrity of hepatic tissues.

13.
Curr Protoc ; 4(9): e70015, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283005

RESUMO

Primary human hepatocytes (PHHs) are recognized as the "gold standard" for evaluating toxicity of various drugs or chemicals in vitro. However, due to their limited availability, primary hepatocytes isolated from rodents are more commonly used in various experimental studies than PHHs. However, bigger differences in drug metabolism were seen between humans and rats compared to those between human and non-human primates. Here, we describe a method to isolate primary hepatocytes from the liver of rhesus macaques (Macaca mulatta, a species of Old-World monkey) after in situ whole liver perfusion. Techniques for cryopreserving and recovering primary macaque hepatocytes (PMHs) are also described. Given the remarkable physiological and genetic similarity of non-human primates to humans, PMHs isolated using this protocol may serve as a reliable surrogate of PHHs in toxicological research and preclinical studies. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: In situ whole liver perfusion Basic Protocol 2: Primary macaque hepatocyte isolation and cell plating Basic Protocol 3: Cryopreservation and recovery of primary macaque hepatocytes.


Assuntos
Criopreservação , Hepatócitos , Macaca mulatta , Animais , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Criopreservação/métodos , Separação Celular/métodos , Fígado/citologia , Perfusão/métodos , Células Cultivadas
14.
Sci Rep ; 14(1): 21528, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277635

RESUMO

Hepatic spheroids are of high interest in basic research, drug discovery and cell therapy. Existing methods for spheroid culture present advantages and drawbacks. An alternative technology is explored: the hepatic spheroid formation and culture in an acoustofluidic chip, using HepaRG cell line. Spheroid formation and morphology, cell viability, genetic stability, and hepatic functions are analyzed after 6 days of culture in acoustic levitation. They are compared to 2D culture and non-levitated 3D cultures. Sizes of the 25 spheroids created in a single acoustofluidic microphysiological system are homogeneous. The acoustic parameters in our system do not induce cell mortality nor DNA damage. Spheroids are cohesive and dense. From a functional point of view, hepatic spheroids obtained by acoustic levitation exhibit polarity markers, secrete albumin and express hepatic genes at higher levels compared to 2D and low attachment 3D cultures. In conclusion, this microphysiological system proves not only to be suitable for long-term culture of hepatic spheroids, but also to favor differentiation and functionality within 6 days of culture.


Assuntos
Acústica , Técnicas de Cultura de Células , Hepatócitos , Esferoides Celulares , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Humanos , Hepatócitos/citologia , Hepatócitos/metabolismo , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Linhagem Celular , Técnicas de Cultura de Células em Três Dimensões/métodos , Fígado/citologia , Fígado/metabolismo
15.
Cell Mol Life Sci ; 81(1): 335, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117755

RESUMO

Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Proteínas do Capsídeo , Vírus da Hepatite E , Vírus da Hepatite E/metabolismo , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/genética , Humanos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Transporte Proteico , Proteínas Virais/metabolismo , Proteínas Virais/genética , Montagem de Vírus , Hepatite E/metabolismo , Hepatite E/virologia
16.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216105

RESUMO

Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galß1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.


Assuntos
Hepatócitos , Polissacarídeos , Animais , Camundongos , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Glicosilação , Hepatócitos/metabolismo , Camundongos Knockout , Chaperonas Moleculares , Polissacarídeos/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética
17.
Bio Protoc ; 14(15): e5042, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39131195

RESUMO

The liver is an essential organ that is involved in the metabolism, synthesis, and secretion of serum proteins and detoxification of xenobiotic compounds and alcohol. Studies on liver diseases have largely relied on cancer-derived cell lines that have proven to be inferior due to the lack of drug-metabolising enzymes. Primary human hepatocytes are considered the gold-standard for evaluating drug metabolism. However, several factors such as lack of donors, high cost of cells, and loss of polarity of the cells have limited their widescale adoption and utility. Stem cells have emerged as an alternative source for liver cells that could be utilised for studying liver diseases, developmental biology, toxicology testing, and regenerative medicine. In this article, we describe in detail an optimised protocol for the generation of multicellular 3D liver organoids composed of hepatocytes, stellate cells, and Kupffer cells as a tractable robust model of the liver. Key features • Optimising a protocol for generating multicellular 3D liver organoids from induced pluripotent stem cells. Graphical overview.

18.
Fish Physiol Biochem ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090453

RESUMO

Exosomes regulate lipid metabolism by carrying miRNAs, nucleic acids, and proteins, thereby influencing the function of receptor cells. Glucose-regulated protein 78 (GRP78) is also involved in the regulation of lipid metabolism. However, it remains unclear whether exosomes derived from fatty hepatocytes (OA-Exo) regulate lipid metabolism through the enrichment of GRP78. In this study, we observed the expression of GRP78 was significantly increased in fatty hepatocytes (incubating hepatocytes with oleic acid (OA) for 24 h) and OA-Exo (P < 0.05). In addition, OA-Exo (50 µg/mL) and GRP78 protein (1 µg/mL) significant increased the content of triacylglycerol (TG) and total cholesterol (TC), as well as up-regulated the expression of GRP78 and inositol-requiring enzyme-1alpha (IRE1α) protein (P < 0.05). We further used YUM70 (an inhibitor of GRP78) to inhibit endogenous GRP78, and compared with the YUM70 group, OA-Exo reversed the effect of YUM70 and increased the content of TG, TC, and the expression of GRP78 protein in hepatocytes (P < 0.05). Furthermore, the inhibition of the IRE1α pathway with 4µ8C resulted in a significant decrease in TG content compared to the control group (P < 0.05). However, when compared with the 4µ8C group, OA-Exo and GRP78 reversed the effect of 4µ8C and significantly increased TG content (P < 0.05). Taken together, these results indicated that OA-Exo activated IRE1α to promote lipid accumulation in hepatocytes through the enrichment of GRP78. This study provided a new perspective for further exploration of exosomal lipid metabolism in fish.

19.
Front Endocrinol (Lausanne) ; 15: 1374644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175576

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.


Assuntos
Autofagia , Progressão da Doença , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Autofagia/fisiologia , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Transdução de Sinais
20.
J Xenobiot ; 14(3): 1064-1078, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39189175

RESUMO

Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid model obtained from juvenile brown trout (Salmo trutta) primary hepatocytes under estrogenic stimulation. The spheroids were exposed for six days to environmentally relevant concentrations of 17α-ethinylestradiol-EE2 (1-100 ng/L). The mRNA levels of peroxisome (catalase-Cat and urate oxidase-Uox), lipid metabolism (acyl-CoA long chain synthetase 1-Acsl1, apolipoprotein AI-ApoAI, and fatty acid binding protein 1-Fabp1), and estrogen-related (estrogen receptor α-ERα, estrogen receptor ß-ERß, vitellogenin A-VtgA, zona pellucida glycoprotein 2.5-ZP2.5, and zona pellucida glycoprotein 3a.2-ZP3a.2) target genes were evaluated by quantitative real-time polymerase chain reaction. Immunohistochemistry was used to assess Vtg and ZP protein expressions. At the highest EE2 concentration, VtgA and ZP2.5 genes were significantly upregulated. The remaining target genes were not significantly altered by EE2. Vtg and ZP immunostaining was consistently increased in spheroids exposed to 50 and 100 ng/L of EE2, whereas lower EE2 levels resulted in a weaker signal. EE2 did not induce significant changes in the spheroids' viability and morphological parameters. This study identified EE2 effects at environmentally relevant doses in trout liver spheroids, indicating its usefulness as a proxy for in vivo impacts of xenoestrogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA