Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e34813, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157401

RESUMO

In this study, a kinetic model of the heterogeneous photocatalytic degradation of acetaminophen and its main transformation products is presented. Kinetic photocatalytic modeling and photon absorption rate modeling were included. Monte Carlo method was used to model the photon absorption process. Experiments were carried out in a reactor operated in batch mode and TiO2 nanotubes were used as photocatalyst irradiated with 254 nm UVC. Kinetic parameters were estimated from the experiments data by applying a non-linear regression procedure. Intrinsic expressions to the kinetics of acetaminophen degradation and its main transformation products were derived. Model, kinetics and photon absorption formulations and parameters proved to be affordable for describing the photocatalytic degradation of acetaminophen, but improvements should be done for better description of formation and oxidation kinetics of main transformation products. The model should be tested with other pharmaceuticals and emergent pollutants to calibrate it and evaluate its applicability in a wide range of compounds.

2.
ChemSusChem ; : e202401214, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031513

RESUMO

Aftobetin is a non-invasive diagnosis probe of Alzheimer's disease, that can bind with aggregated ß-amyloid peptide in eye's lenses, used for early diagnosis of Alzheimer's disease in a rapid and painless mode. The reported synthesis of this probe fell short in the aspects of greenness and economy due to the involvement of toxic Chromium(IV) oxidant, noble palladium catalyst, elevated reaction temperature, the long reaction time as well as the cumbersome workup. Herein, a holistic optimization of the synthetic process was achieved via the employment of flow technology and heterogenous photocatalysis. Firstly, the integration of heterogenous carbon nitrides photocatalysis and circulation flow technology furnished the air oxidation of alcohol and nickel catalyzed C-N coupling at 20-g scale, thus avoiding the use of toxic Chromium and precious palladium species respectively. Flow-intensified esterification between acyl chloride and alcohol, just taking 30 seconds replaced the Steglich esterification of 6 hours, also avoiding the generation of difficult-to-remove dicyclohexylurea. Finally, C-N coupling, esterification and Knoevenagel condensation were telescoped together, thus simplifying the reaction workup. This fully-flow protocol led to the on-demand synthesis of eight probes.

3.
ChemSusChem ; 17(10): e202301882, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38242851

RESUMO

A novel and efficient approach for the synthesis of α, ß-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.

4.
Environ Technol ; 44(8): 1125-1134, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34704530

RESUMO

Due to its high solubility in water, a large amount of the neonicotinoid insecticide acetamiprid persisting in the soil of treated crops enters surface water or groundwater. The aim of this study was to investigate the photocatalytic degradation of acetamiprid in an aqueous medium. The experiments were carried out in an annular suspension reactor operating in recirculated batch mode and using a UV-A lamp as the radiation source. An appropriate modification of the commercial TiO2-P25 photocatalyst was carried out to reduce its band gap energy and electron-hole recombination as well as to extend the visible light range of TiO2. The photodegradation study was carried out using a three-factor two-stage Box-Behnken experimental design to investigate the main effects and interactions between the operating variables, such as solution pH, initial concentration of acetamiprid, and amount of photocatalyst. The efficiency of the processes was determined by high performance liquid chromatography. The first-order pseudo-reaction kinetic model, as a simplification of the models of Langmuir-Hinshelwood under conditions of relatively low acetamiprid concentration, was applied and the reaction rate constants were estimated. The results of the study showed that the initial concentration of the pollutant was the most influential factor for the photocatalytic degradation process. Using ANOVA analysis, a linear model was established to predict the system behaviour at different operating conditions. The highest conversion and rate constant of acetamiprid degradation were recorded in the experiment with the lowest tested concentration of acetamiprid (2 mg/L), the average concentration of photocatalyst (60 mg) and at pH 8.


Assuntos
Inseticidas , Poluentes Químicos da Água , Águas Residuárias , Catálise , Poluentes Químicos da Água/química , Neonicotinoides , Titânio/química , Cinética
5.
Chemosphere ; 275: 130020, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677268

RESUMO

In this study, sludges generated from Ti-based flocculation of dye wastewater were used to retrieve photoactive titania (S-TiO2). It was heterojunctioned with graphitic carbon nitride (g-CN) to augment photoactivity under UV/visible light irradiance. Later the as-prepared samples were utilized to remove nitrogen oxides (NOx) in the atmospheric condition through photocatalysis. Heterojunction between S-TiO2 and g-CN was prepared through facile calcination (@550 °C) of S-TiO2 and melamine mix. Advanced sample characterization was carried out and documented extensively. Successful heterojunction was confirmed from the assessment of morphological and optical attributes of the samples. Finally, the prepared samples' level of photoactivity was assessed through photooxidation of NOx under both UV and visible light irradiance. Enhanced photoactivity was observed in the prepared samples irrespective of the light types. After 1 h of UV/visible light-based photooxidation, the best sample STC4 was found to remove 15.18% and 9.16% of atmospheric NO, respectively. In STC4, the mixing ratio of S-TiO2, to melamine was maintained as 1:3. Moreover, the optical bandgap of STC4 was found as 2.65 eV, where for S-TiO2, it was 2.83 eV. Hence, the restrained rate of photogenerated charge recombination and tailored energy bandgap of the as-prepared samples were the primary factors for enhancing photoactivity.


Assuntos
Esgotos , Águas Residuárias , Grafite , Compostos de Nitrogênio , Titânio
6.
J Environ Manage ; 195(Pt 2): 157-165, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27394084

RESUMO

In the present study treatability of persistent organic compounds from the flow back water after hydrauling fracturing was investigated. The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhance the separation and recoverable property of nanosized TiO2 photocatalyst. Fe3O4/TiO2 and Fe3O4@SiO2/TiO2 nanocomposites were prepared by heteroagglomeration. The photocatalysts' characteristics by X-ray diffractometry (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS) showed that sample with the mass ratio of Fe3O4 to TiO2 equal 1:4 and molar ratio of TEOS:Fe3O4 = 8:1 and NH4OH:TEOS = 16:1 obtained by deposition TiO2 P25 (Evonik) on magnetite core had about 124 m2 g-1 specific surface area and superparamagnetic properties. The prepared composites contained TiO2 and Fe3O4 crystal phases. The photocatalytic activity was estimated by measuring the decomposition rate of three model pollutants identified in the flow back water from one of the Baltic Shale Basin. Regarding flow back water treatment after shale gas exploration, the progress of photocatalytic degradation of organic compounds was measured by chemical oxygen demand (COD) concentration. The Fe3O4@SiO2/TiO2_P25 composite nanoparticles were recovered and re-used without significant reduction of efficiency.


Assuntos
Dióxido de Silício/química , Titânio/química , Catálise , Nanocompostos/química , Semicondutores , Purificação da Água
7.
Water Res ; 47(14): 5130-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23863374

RESUMO

This work reports on the changes in compositions of humic acids (HAs) and fulvic acids (FAs) during photocatalytic degradation. The HAs and FAs were obtained from the XAD-resin fractionation of natural-organic matter (NOM) from a bog lake (Lake Hohloh, Black Forest, Germany). Degussa P-25 titanium dioxide (TiO2) in a suspension and a solar UV simulator (batch reactor) were used in the experiments. The photocatalytic degradation of the HAs and FAs were monitored using size-exclusion chromatography (SEC) equipped with dissolved organic carbon (DOC) and ultraviolet (UV254) detection (SEC-DOC and SEC-UV254) and UV-Vis spectrophotometry. The evolutions of the photocatalytic degradations of the HA and FA fractions were selective. The photocatalytic degradation started with the degradations of high molecular weight compounds with relatively high UV254 absorbances in the HA and FA fractions to yield low molecular weight compounds showing less specific UV254 absorbances. Observance of the same tendency for the original NOM from Lake Hohloh indicates that these XAD-fractions still having complex compound mixtures. However, the larger molecular weight fractions of the FAs showed higher preferential adsorptions onto TiO2, which caused their faster degradation rates. Furthermore, FAs showed a greater reduction of the total THM formation potential (TTHMFP) and the organic halogen compounds adsorbable on activated carbon formation potential (AOXFP), in comparison with the HAs.


Assuntos
Benzopiranos/química , Fracionamento Químico/métodos , Cromatografia em Gel/métodos , Substâncias Húmicas , Lagos , Fotoquímica/métodos , Adsorção , Desinfecção , Alemanha , Halogenação , Peso Molecular , Fotólise , Espectrofotometria Ultravioleta , Luz Solar , Titânio , Raios Ultravioleta , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA