RESUMO
Orobanche aegyptiaca Pers. is a holoparasitic plant that severely reduces tomato (Solanum lycopersicum L.) production in China. However, there is a lack of effective control methods and few known sources of genetic resistance. In this study, we focused on key genes in the JAZ family, comparing the JAZ family in Arabidopsis thaliana (L. Heynh.) to the tomato genome. After identifying the JAZ family members in S. lycopersicum, we performed chromosomal localization and linear analysis with phylogenetic relationship analysis of the JAZ family. We also analyzed the gene structure of the JAZ gene family members in tomato and the homology of the JAZ genes among the different species to study their relatedness. The key genes for O. aegyptiaca resistance were identified using VIGS (virus-induced gene silencing), and the parasitization rate of silenced tomato plants against O. aegyptiaca increased by 47.23-91.13%. The genes were localized in the nucleus by subcellular localization. Heterologous overexpression in A. thaliana showed that the key gene had a strong effect on the parasitization process of O. aegyptiaca, and the overexpression of the key gene reduced the parasitization rate of O. aegyptiaca 1.69-fold. Finally, it was found that the SLJAZ15 gene can positively regulate the hormone content in tomato plants and affect plant growth and development, further elucidating the function of this gene.
RESUMO
INTRODUCTION: Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE: This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS: 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS: Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS: This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.
Assuntos
Escherichia coli , Metaboloma , Metabolômica , Escherichia coli/metabolismo , Escherichia coli/genética , Metabolômica/métodos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Mutação , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genéticaRESUMO
Anthropogenic activities have led to a drastic shift from natural fuels to alternative renewable energy reserves that demand heat-stable cellulases. Cellobiohydrolase is an indispensable member of cellulases that play a critical role in the degradation of cellulosic biomass. This article details the process of cloning the cellobiohydrolase gene from the thermophilic bacterium Caldicellulosiruptor bescii and expressing it in Escherichia coli (BL21) CondonPlus DE3-(RIPL) using the pET-21a(+) expression vector. Multi-alignments and structural modeling studies reveal that recombinant CbCBH contained a conserved cellulose binding domain III. The enzyme's catalytic site included Asp-372 and Glu-620, which are either involved in substrate or metal binding. The purified CbCBH, with a molecular weight of 91.8 kDa, displayed peak activity against pNPC (167.93 U/mg) at 65°C and pH 6.0. Moreover, it demonstrated remarkable stability across a broad temperature range (60-80°C) for 8 h. Additionally, the Plackett-Burman experimental model was employed to assess the saccharification of pretreated sugarcane bagasse with CbCBH, aiming to evaluate the cultivation conditions. The optimized parameters, including a pH of 6.0, a temperature of 55°C, a 24-hour incubation period, a substrate concentration of 1.5% (w/v), and enzyme activity of 120 U, resulted in an observed saccharification efficiency of 28.45%. This discovery indicates that the recombinant CbCBH holds promising potential for biofuel sector.
Assuntos
Biomassa , Caldicellulosiruptor , Celulose 1,4-beta-Celobiosidase , Celulose , Clonagem Molecular , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose 1,4-beta-Celobiosidase/isolamento & purificação , Clonagem Molecular/métodos , Caldicellulosiruptor/genética , Celulose/metabolismo , Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharum/química , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estabilidade Enzimática , Temperatura , HidróliseRESUMO
Bioactive proteins are often overexpressed in different host systems for biotechnological/biomedical applications. Endolysins are natural bactericidal proteins that cleave the bacterial peptidoglycan membrane, and have the potential to be the next-generation enzybiotics. Therefore, the present study aims to elucidate the impact of two endolysins (T4L, T7L) overexpression on metabolic fingerprint of E. coli using NMR spectroscopy. The 1H NMR-based metabolomics analysis revealed global metabolite profiles of E. coli in response to endolysins. The study has identified nearly 75 metabolites, including organic acids, amino acids, sugars and nucleic acids. RNA Polymerase (RNAP) has been considered as reference protein for marking the specific alterations in metabolic pathways. The data suggested downregulation of central carbon metabolic pathway in both endolysins overexpression, but to a different extent. Also, the endolysin overexpression have highlighted the enhanced metabolic load and stress generation in the host cells, thus leading to the activation of osmoregulatory pathways. The overall changes in metabolic fingerprint of E. coli highlights the enhanced perturbations during the overexpression of T4L as compared to T7L. These untargeted metabolic studies shed light on the regulation of molecular pathways during the heterologous overexpression of these lytic enzymes that are lethal to the host.
Assuntos
Escherichia coli , N-Acetil-Muramil-L-Alanina Amidase , N-Acetil-Muramil-L-Alanina Amidase/química , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófago T4/metabolismo , Endopeptidases/química , Peptidoglicano , Bactérias/metabolismoRESUMO
Although full sequence data of several embryogenesis-related genes are available in conifers, their functions are still poorly understood. In this study, we focused on the transcription factor WUSCHEL-related HOMEOBOX 2 (WOX2), which is involved in determination of the apical domain during early embryogenesis, and is required for initiation of the stem cell program in the embryogenic shoot meristem of Arabidopsis. We studied the effects of constitutive overexpression of Pinus pinaster WOX2 (PpWOX2) by Agrobacterium-mediated transformation of P. pinaster somatic embryos and Arabidopsis seedlings. Overexpression of PpWOX2 during proliferation and maturation of somatic embryos of P. pinaster led to alterations in the quantity and quality of cotyledonary embryos. In addition, transgenic somatic seedlings of P. pinaster showed non-embryogenic callus formation in the region of roots and subsequently inhibited root growth. Overexpression of PpWOX2 in Arabidopsis promoted somatic embryogenesis and organogenesis in a part of the transgenic seedlings of the first and second generations. A concomitant increased expression of endogenous embryogenesis-related genes such as AtLEC1 was detected in transgenic plants of the first generation. Various plant phenotypes observed from single overexpressing transgenic lines of the second generation suggest some significant interactions between PpWOX2 and AtWOX2. As an explanation, functional redundancy in the WOX family is suggested for seed plants. Our results demonstrate that the constitutive high expression of PpWOX2 in Arabidopsis and P. pinaster affected embryogenesis-related traits. These findings further support some evolutionary conserved roles of this gene in embryo development of seed plants and have practical implications toward somatic embryogenesis induction in conifers.
RESUMO
The heterologous overexpression states of prion proteins play a critical role in understanding the mechanisms of prion-related diseases. We report herein the identification of soluble monomer and complex states for a bakers' yeast prion, Sup35, when expressed in Escherichia coli. Two peaks are apparent with the elution of His-tagged Sup35 by imidazole from a Ni2+ affinity column. Peak I contains Sup35 in both monomer and aggregated states. Sup35 aggregate is abbreviated as C-aggregate and includes a non-fibril complex comprising Sup35 aggregate-HSP90-Dna K, ATP synthase ß unit (chain D), 30S ribosome subunit, and Omp F. The purified monomer and C-aggregate can remain stable for an extended period of time. Peak II contains Sup35 also in both monomer and aggregated (abbreviated as S-aggregate) states, but the aggregated states are caused by the formation of inter-Sup35 disulfide bonds. This study demonstrates that further assembly of Sup35 non-fibril C-aggregate can be interrupted by the chaperone repertoire system in E. coli.
Assuntos
Príons , Proteínas de Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Príons/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/químicaRESUMO
Yarrowia lipolytica is progressively being employed as a workhouse for recombinant protein expression. Here, we expanded the molecular toolbox by engineering the enolase promoter (pENO) and developed a new self-excisable vector, and based on this, a combined strategy was employed to enhance the expression of Thermomyces lanuginosus lipase (TLL) in Y. lipolytica. The strength of 11 truncated enolase promoters of different length was first identified using eGFP as a reporter. Seven of the truncated promoters were selected to examine their ability for driving TLL expression. Then, a series of enolase promoters with higher activities were developed by upstream fusing of different copies of UAS1B, and the recombinant strain Po1f/hp16e100-tll harboring the optimal promoter hp16e100 obtained a TLL activity of 447 U/mL. Additionally, a new self-excisable vector was developed based on a Cre/loxP recombination system, which achieved efficient markerless integration in Y. lipolytica. Subsequently, strains harboring one to four copies of the tll gene were constructed using this tool, with the three-copy strain Po1f/3tll showing the highest activity of 579 U/mL. The activity of Po1f/3tll was then increased to 720 U/mL by optimizing the shaking flask fermentation parameters. Moreover, the folding-related proteins Hac1, Pdi, and Kar2 were employed to further enhance TLL expression, and the TLL activity of the optimal recombinant strain Po1f/3tll-hac1-pdi-kar2 reached 1197 U/mL. By using this combined strategy, TLL activity was enhanced by approximately 39.9-fold compared to the initial strain. Thus, the new vector and the combined strategy could be a useful tool to engineer Y. lipolytica for high-level expression of heterologous protein.
Assuntos
Eurotiales , Yarrowia , Eurotiales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Regiões Promotoras GenéticasRESUMO
A putative cellulolytic gene (825 bp) from Thermotoga naphthophila RKU-10T was overexpressed as an active soluble endo-1,4-ß-glucanase (TnCel12B), belongs to glycoside hydrolase family 12 (GH12), in a mesophilic expression host. Heterologous expression and engineered bacterial cell mass was improved through specific strategies (induction and cultivation). Hence, intracellular activity of TnCel12B was enhanced in ZYBM9 modified medium (pH 7.0) by 8.38 and 6.25 fold with lactose (200 mM) and IPTG (0.5 mM) induction, respectively; and 6.95 fold was increased in ZYP-5052 auto-inducing medium after 8 h incubation at 26 °C (200 rev min-1). Purified TnCel12B with a molecular weight of ~32 kDa, was optimally active at 90 °C and pH 6.0; and exhibited prodigious stability over a wide range of temperature (50-85 °C) and pH (5.0-9.0) for 8 h TnCel12B displayed great resistance towards different chemical modulators, though activity was improved by Mg2+, Zn2+, Pb2+ and Ca2+. Purified TnCel12B had affinity with various substrates but peak activity was observed toward barley ß-glucan (1664 U mg-1) and carboxymethyl cellulose (736 U mg-1). The values of Km, Vmax, kcat, and kcatKm-1 were found to be 4.63 mg mL-1, 916 µmol mg-1min-1, 1326.7 s-1 and 286.54 mL mg-1 s-1, respectively using CMC substrate. All noteworthy features of TnCel12B make it an appropriate industrial candidate for bioethanol production and various other potential applications.
Assuntos
Proteínas de Bactérias , Celulase , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Celulase/química , Celulase/isolamento & purificação , Clonagem Molecular , Microbiologia Industrial , Thermotoga/enzimologia , Thermotoga/genéticaRESUMO
We have established an experimental system for the functional analysis of thylakoidal TatB, a component of the membrane-integral TatBC receptor complex of the thylakoidal Twin-arginine protein transport (Tat) machinery. For this purpose, the intrinsic TatB activity of isolated pea thylakoids was inhibited by affinity-purified antibodies and substituted by supplementing the assays with TatB protein either obtained by in vitro translation or purified after heterologous expression in E. coli. Tat transport activity of such reconstituted thylakoids, which was analysed with the authentic Tat substrate pOEC16, reached routinely 20-25% of the activity of mock-treated thylakoid vesicles analysed in parallel. In contrast, supplementation of the assays with the purified antigen comprising all but the N-terminal transmembrane helix of thylakoidal TatB did not result in Tat transport reconstitution which confirms that transport relies strictly on the activity of the TatB protein added and is not due to restoration of the intrinsic TatB activity by antibody release. Unexpectedly, even a mutated TatB protein (TatB,E10C) assumed to be incapable of assembling into the TatBC receptor complex showed low but considerable transport reconstitution underlining the sensitivity of the approach and its suitability for further functional analyses of protein variants. Finally, quantification of TatB demand suggests that TatA and TatB are required in approximately equimolar amounts to achieve Tat-dependent thylakoid transport.
Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Tilacoides/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
Soluble hydrogenase I (SHI) from the hyperthermophilic archaeon Pyrococcus furiosus is a heterotetrameric [NiFe] hydrogenase that catalyzes the reversible reduction of protons by NADPH into hydrogen gas (H2 ). Here, the authors expressed the four αßγδ subunits of SHI encoded by one gene cluster in another hyperthermophilic archaeon, Thermococcus kodakarensis KOD1, which uses its hydrogenase maturation apparatus without the coexpression of native P. furiosus hydrogenase endopeptidases (maturation proteases). The SHI overexpression of T. kodakarensis resulted in more than 1200-fold enhancement in the hydrogenase activity of the cell lysate compared to that of the host strain with an empty vector. An active, purified 12-His tagged recombinant SHI (rSHI) is obtained by one-step affinity adsorption on nickel-charged resin. Size-exclusion chromatography show that purified rSHI is heterotetrameric and has a molecular mass of 150 kDa. The purified rSHI has a half-life of 70 h at 80 °C. This rSHI is used to design a novel in vitro synthetic enzymatic biosystem to convert pyruvate and H2 gas into lactate in a theoretical yield, whereas rSHI is used for NADPH regeneration; an FMN-containing diaphorase (DI) is used to match NADP-preferred SHI and NAD-preferred lactate dehydrogenase (LDH). This study provides a cost-efficient method to obtain hyperthermostable hydrogenases, which can be used in in vitro synthetic enzymatic biosystems for cofactor regeneration and hydrogen production.
Assuntos
Catálise , Hidrogenase/química , NAD/química , Pyrococcus furiosus/enzimologia , Regulação Enzimológica da Expressão Gênica , Hidrogênio/química , Hidrogenase/genética , NADP/química , Oxirredução , Thermococcus/química , Thermococcus/genéticaRESUMO
As a promising biocatalyst, Yarrowia lipolytica lipase 2 (YlLip2) is limited in its industrial applications due to its low thermostability. In this study, a thermostable YlLip2 mutant was overexpressed in Pichia pastoris and its half-life time was over 30 min at 80 °C. To obtain a higher protein secretion level, the gene dosage of the mutated lip2 gene was optimized and the lipase activity was improved by about 89%. Then, the YlLip2 activity of the obtained strain further increased from 482 to 1465 U/mL via optimizing the shaking flask culture conditions. Subsequently, Hac1p and Vitreoscilla hemoglobin (VHb) were coexpressed with the YlLip2 mutant to reduce the endoplasmic reticulum stress and enhance the oxygen uptake efficiency in the recombinant strains, respectively. Furthermore, high-density fermentations were performed in a 3 L bioreactor and the production of the YlLip2 mutant reached 9080 U/mL. The results demonstrated that the expression level of the thermostable YlLip2 mutant was predominantly enhanced via the combination of these strategies in P. pastoris, which forms a consolidated basis for its large-scale production and future industrial applications.
Assuntos
Proteínas Fúngicas , Temperatura Alta , Lipase , Mutação , Pichia , Yarrowia , Estabilidade Enzimática/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Lipase/biossíntese , Lipase/genética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Yarrowia/enzimologia , Yarrowia/genéticaRESUMO
This study is dedicated to efficiently produce Rhizopus oryzae lipase (ROL) by optimizing the expression of multiple expression-related helper proteins in Pichia pastoris. A series of engineered strains harboring different copy numbers of the ROL gene and different copies of the chaperone Pdi gene were first constructed to examine the influence of Pdi gene copy number on ROL production. The results showed that multiple copies of Pdi gene did not significantly improve ROL expression. Then, the effect of the co-overexpression of 10 expression-related helper proteins on ROL secretion was investigated by screening 20 colonies of each transformants. The data from shaking-flask fermentation suggested that Ssa4, Bmh2, Sso2, Pdi, Bip, Hac1, and VHb had positive effects on ROL expression. Subsequently, Ssa4, Bmh2, and Sso2, which all participate in vesicular trafficking and strongly promote ROL expression, were combined to further improve ROL production level. ROL activity of the screened strain GS115/5ROL-Ssa4-Sso2-Bmh2 4# attained 5230 U/mL. Furthermore, when the helper proteins Pdi, Bip, Hac1, and VHb were individually co-expressed with ROL in the strain GS115/5ROL-Ssa4-Sso2-Bmh2 4#, lipase activity increased to 5650 U/mL in the strain GS115/5ROL-Ssa4-Sso2-Bmh2-VHb 9#. Additionally, the maximum ROL activity of 41,700 U/mL was achieved in a 3 L bioreactor for high-density fermentation via a sorbitolâ»methanol co-feeding strategy, reaching almost twofold the value of the initial strain GS115/pAOα-5ROL 11#. Thus, the strategies in this study significantly increased ROL expression level, which is of great potential for the large-scale production of ROL in P. pastoris.
Assuntos
Proteínas Fúngicas/genética , Microbiologia Industrial/métodos , Lipase/genética , Pichia/genética , Rhizopus/enzimologia , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Pichia/metabolismo , Rhizopus/genéticaRESUMO
Rhizopus oryzae lipase (ROL) is an important industrial enzyme limited in application due to its low production in native strains. Here, we used a new combined strategy to overexpress ROL in Pichia pastoris. An efficient method based on bio-brick was developed to construct a series of vectors harboring different copy numbers of ROL gene cassettes, which were then transformed into P. pastoris GS115 to generate a strain with specific copy numbers of ROL. An optimized gene-dosage recombinant strain of GS115/pAOα-5ROL 11# harboring five copies of ROL was screened, revealing production of the highest activity (2700 U/mL), which was 8-fold higher than that of the strain harboring one copy. The activity of GS115/pAOα-5ROL 11# was then enhanced to 3080 U/mL in a shaking flask under optimized culture conditions. Subsequently, the endoplasmic reticulum-associated protein-degradation-related genes Ubc1 or/and Hrd1 were co-expressed with ROL to further increase ROL expression. The activities of the recombinant strains, GS115/5ROL-Ubc1 22#, -Hrd1 15#, and -Hrd1-Ubc1 1#, were 4000 U/mL, 4200 U/mL, and 4750 U/mL, which was 29.9%, 36.4%, and 54.2% higher, respectively, than that observed in GS115/pAOα-5ROL 11#. Using the combined strategy, ROL expression was improved 15.8-fold, with maximum GS115/5ROL-Hrd1-Ubc1 1# activity reaching 33,900 U/mL via a sorbitol/methanol co-feeding strategy in a 3-L fermenter and resulting in a 1.65-, 1.26-, and 1.14-fold enhancement relative to the activities observed in strains GS115/pAOα-5ROL 11#, GS115/5ROL-Ubc1 22#, and GS115/5ROL-Hrd1 15#, respectively. These results indicated that heterologous overexpression of ROL in P. pastoris using this combined strategy is feasible for large-scale industrialization.
Assuntos
Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Proteínas Recombinantes/metabolismo , Rhizopus/enzimologia , Degradação Associada com o Retículo Endoplasmático/genética , Espaço Extracelular/enzimologia , Fermentação , Proteínas Fúngicas/genética , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial/métodos , Lipase/genética , Pichia/genética , Rhizopus/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.363) plays an important role in the human pathogen Pseudomonas aeruginosa because it generates NADPH, an essential cofactor for several biosynthetic pathways and antioxidant enzymes. P. aeruginosa G6PDH is also a key enzyme in the metabolism of various carbon sources, such as glucose, glycerol, fructose, and mannitol. Understanding the kinetic characteristics and mechanisms that control the activity of this enzyme is crucial for future studies in this context. However, one of the impediments to achieving this goal is the limited amount of protein obtained when current purification protocols are implemented, a factor curtailing its biochemical characterization. In this study, we report a fast, efficient and reproducible procedure for the purification of P. aeruginosa G6PDH that can be implemented in a short period (2 days). In order to establish this protocol, the zwf gene, which encodes for this enzyme, was cloned and overexpressed in Escherichia coli cells. In contrast to other procedures, our method is based on protein precipitation with CaCl2 and further purification by ion exchange chromatography. Using this protocol, we were able to obtain 31 mg/L of pure protein that manifested specific activity of 145.7 U/mg. The recombinant enzyme obtained in this study manifested similar physicochemical and kinetic properties to those reported in previous works for this molecule. The large quantities of active enzyme obtained using this procedure will facilitate its structural characterization and identify differences between P. aeruginosa- and human G6PDH, thus contributing to the search for selective inhibitors against the bacterial enzyme.