Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.167
Filtrar
1.
G3 (Bethesda) ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093299

RESUMO

To thrive on melting alpine and polar snow, some Chlorophytes produce an abundance of astaxanthin, causing red blooms, often dominated by genus Sanguina. The red cells have not been cultured, but we recently grew a green biciliate conspecific with Sanguina aurantia from a sample of watermelon snow. This culture provided source material for Oxford Nanopore Technology and Illumina sequencing. Our assembly pipeline exemplifies the value of a hybrid long- and short-read approach for the complexities of working with a culture grown from a field sample. Using bioinformatic tools we separated assembled contigs into two genomic pools based on a difference in GC content (57.5% and 55.1%). We present the data as two assemblies of S. aurantia variants but explore other possibilities. High-throughput chromatin conformation capture analysis (Hi-C sequencing) was used to scaffold the assemblies into a 96 MB genome designated 'A' and a 102 MB genome designated 'B'. Both assemblies are highly contiguous: genome A consists of 38 scaffolds with an N50 of 5.4 Mb while genome B has 50 scaffolds with an N50 of 6.4 Mb. RNA-sequencing was used to improve gene annotation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39133188

RESUMO

Despite the ongoing epidemic of youth vaping, the long-term health consequences of electronic cigarette use are largely unknown. We report the effects of vaping versus smoking on the oral cell methylome of healthy young vapers and smokers relative to non-users. Whereas vapers and smokers differ in number of differentially methylated regions (DMRs) (831 vs 2,863), they share striking similarities in the distribution and patterns of DNA methylation, chromatin states, transcription factor binding motifs, and pathways. There is substantial overlap in DMR-associated genes between vapers and smokers, with the shared subset of genes enriched for transcriptional regulation, signaling, tobacco use disorders, and cancer-related pathways. Of significance is the identification of a common hypermethylated DMR at the promoter of "Hypermethylated In Cancer 1" (HIC1), a tumor suppressor gene frequently silenced in smoking-related cancers. Our data support a potential link between epigenomic dysregulation in youth vapers and disease risk. These novel findings have significant implications for public health and tobacco product regulation.

3.
Methods Mol Biol ; 2818: 45-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126466

RESUMO

Hi-C, a genome-wide chromosome conformation capture assay, is a powerful tool used to study three-dimensional genome organization by converting physical pairwise interactions into counts of pairwise interactions. To study the many temporally regulated facets of meiotic recombination in S. cerevisiae, the Hi-C assay must be robust such that fine- and wide-scale comparisons between genetic datasets can be made. Here we describe an updated protocol for Hi-C (Hi-C2B) that generates reproducible libraries of interaction data with low noise and for a relatively low cost.


Assuntos
Cromossomos Fúngicos , Meiose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Meiose/genética , Cromossomos Fúngicos/genética , Recombinação Genética , Genoma Fúngico
4.
Cell Rep ; : 114498, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39084219

RESUMO

Cohesin shapes the chromatin architecture, including enhancer-promoter interactions. Its components, especially STAG2, but not its paralog STAG1, are frequently mutated in myeloid malignancies. To elucidate the underlying mechanisms of leukemogenesis, we comprehensively characterized genetic, transcriptional, and chromatin conformational changes in acute myeloid leukemia (AML) patient samples. Specific loci displayed altered cohesin occupancy, gene expression, and local chromatin activation, which were not compensated by the remaining STAG1-cohesin. These changes could be linked to disrupted spatial chromatin looping in cohesin-mutated AMLs. Complementary depletion of STAG2 or STAG1 in primary human hematopoietic progenitors (HSPCs) revealed effects resembling STAG2-mutant AML-specific changes following STAG2 knockdown, not invoked by the depletion of STAG1. STAG2-deficient HSPCs displayed impaired differentiation capacity and maintained HSPC-like gene expression. This work establishes STAG2 as a key regulator of chromatin contacts, gene expression, and differentiation in the hematopoietic system and identifies candidate target genes that may be implicated in human leukemogenesis.

5.
J Comput Biol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047029

RESUMO

High-throughput chromosome conformation capture (Hi-C) technology captures spatial interactions of DNA sequences into matrices, and software tools are developed to identify topologically associating domains (TADs) from the Hi-C matrices. With structural information theory, SuperTAD adopted a dynamic programming approach to find the TAD hierarchy with minimal structural entropy. However, the algorithm suffers from high time complexity. To accelerate this algorithm, we design and implement an approximation algorithm with a theoretical performance guarantee. We implemented a package, SuperTAD-Fast. Using Hi-C matrices and simulated data, we demonstrated that SuperTAD-Fast achieved great runtime improvement compared with SuperTAD. SuperTAD-Fast shows high consistency and significant enrichment of structural proteins from Hi-C data of human cell lines in comparison with the existing six hierarchical TADs detecting methods.

6.
G3 (Bethesda) ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047060

RESUMO

The Nepetoideae, a subfamily of Lamiaceae (mint family), is rich in aromatic plants, many of which are sought after for their use as flavours and fragrances or for their medicinal properties. Here we present genome assemblies for two species in Nepetiodeae: Drepanocaruym sewerzowii and Marmoritis complanata. Both assemblies were generated using Oxford Nanopore Q20+ reads with contigs anchored to nine pseudomolecules that resulted in 335 Mb and 305 Mb assemblies, respectively, and BUSCO scores above 95% for both the assembly and annotation. We furthermore provide a species tree for the Lamiaceae using only genome derived gene models, complementing existing transcriptome and marker-based phylogenies.

7.
Proc Natl Acad Sci U S A ; 121(28): e2407077121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954553

RESUMO

An array of motor proteins consumes chemical energy in setting up the architectures of chromosomes. Here, we explore how the structure of ideal polymer chains is influenced by two classes of motors. The first class which we call "swimming motors" acts to propel the chromatin fiber through three-dimensional space. They represent a caricature of motors such as RNA polymerases. Previously, they have often been described by adding a persistent flow onto Brownian diffusion of the chain. The second class of motors, which we call "grappling motors" caricatures the loop extrusion processes in which segments of chromatin fibers some distance apart are brought together. We analyze these models using a self-consistent variational phonon approximation to a many-body Master equation incorporating motor activities. We show that whether the swimming motors lead to contraction or expansion depends on the susceptibility of the motors, that is, how their activity depends on the forces they must exert. Grappling motors in contrast to swimming motors lead to long-ranged correlations that resemble those first suggested for fractal globules and that are consistent with the effective interactions inferred by energy landscape analyses of Hi-C data on the interphase chromosome.


Assuntos
Cromossomos , Cromatina/química , Cromatina/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química
8.
Methods Mol Biol ; 2819: 3-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028499

RESUMO

The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.


Assuntos
Cromossomos Bacterianos , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Conformação de Ácido Nucleico , Genoma Bacteriano , Bactérias/genética
9.
Methods Mol Biol ; 2819: 27-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028500

RESUMO

The 3D fold structure of the genome is intricately linked to its function. As a result, descriptors of 3D genome conformation are becoming increasingly important as markers for disease and therapeutic responses. Circuit topology, a theory of folds, formalizes the arrangement of contacts in an entangled chain. It is uniquely suited for the topological description of the cellular genome and changes to genomic architecture during physiological processes like cellular differentiation or pathological and therapeutic alterations. In this discussion, we will explore circuit topology and its ability to extract topological information from single-cell HiC data.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Biologia Computacional/métodos , Genômica/métodos , Cromatina/genética , Cromatina/metabolismo , Cromatina/química , Software , Genoma
10.
Methods Mol Biol ; 2819: 125-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028505

RESUMO

Many approaches for measuring three-dimensional chromosomal conformations rely upon formaldehyde crosslinking followed by subsequent proximity ligation, a family of methods exemplified by 3C, Hi-C, etc. Here we provide an alternative crosslinking-free procedure for high-throughput identification of long-range contacts in the chromosomes of enterobacteria, making use of contact-dependent transposition of phage Mu to identify distant loci in close contact. The procedure described here will suffice to provide a comprehensive map of transposition frequencies between tens of thousands of loci in a bacterial genome, with the resolution limited by the diversity of the insertion site library used and the sequencing depth applied.


Assuntos
Mapeamento Cromossômico , Cromossomos Bacterianos , Escherichia coli , Escherichia coli/genética , Cromossomos Bacterianos/genética , Mapeamento Cromossômico/métodos , Bacteriófago mu/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Elementos de DNA Transponíveis/genética
11.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975892

RESUMO

Understanding the biological functions and processes of genes, particularly those not yet characterized, is crucial for advancing molecular biology and identifying therapeutic targets. The hypothesis guiding this study is that the 3D proximity of genes correlates with their functional interactions and relevance in prokaryotes. We introduced 3D-GeneNet, an innovative software tool that utilizes high-throughput sequencing data from chromosome conformation capture techniques and integrates topological metrics to construct gene association networks. Through a series of comparative analyses focused on spatial versus linear distances, we explored various dimensions such as topological structure, functional enrichment levels, distribution patterns of linear distances among gene pairs, and the area under the receiver operating characteristic curve by utilizing model organism Escherichia coli K-12. Furthermore, 3D-GeneNet was shown to maintain good accuracy compared to multiple algorithms (neighbourhood, co-occurrence, coexpression, and fusion) across multiple bacteria, including E. coli, Brucella abortus, and Vibrio cholerae. In addition, the accuracy of 3D-GeneNet's prediction of long-distance gene interactions was identified by bacterial two-hybrid assays on E. coli K-12 MG1655, where 3D-GeneNet not only increased the accuracy of linear genomic distance tripled but also achieved 60% accuracy by running alone. Finally, it can be concluded that the applicability of 3D-GeneNet will extend to various bacterial forms, including Gram-negative, Gram-positive, single-, and multi-chromosomal bacteria through Hi-C sequencing and analysis. Such findings highlight the broad applicability and significant promise of this method in the realm of gene association network. 3D-GeneNet is freely accessible at https://github.com/gaoyuanccc/3D-GeneNet.


Assuntos
Redes Reguladoras de Genes , Software , Algoritmos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
12.
G3 (Bethesda) ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973709

RESUMO

The giant freshwater prawn (Macrobrachium rosenbergii) is a key species in the aquaculture industry in several Asian, African and South American countries. Despite a considerable growth in its production worldwide, the genetic complexities of M. rosenbergii various morphotypes pose challenges in cultivation. This study reports the first chromosome-scale reference genome and a high-quality full-length transcriptome assembly for M. rosenbergii. We employed the PacBio High Fidelity (HiFi) sequencing to obtain an initial draft assembly and further scaffolded it with the chromatin contact mapping (Hi-C) technique to achieve a final assembly of 3.73-Gb with an N50 scaffold length of 33.6 Mb. Repetitive elements constituted nearly 60% of the genome assembly, with simple sequence repeats and retrotransposons being the most abundant. The availability of both the chromosome-scale assembly and the full-length transcriptome assembly enabled us to thoroughly probe alternative splicing events in M. rosenbergii. Among the 2,041 events investigated, exon skipping represented the most prevalent class, followed by intron retention. Interestingly, specific isoforms were observed across multiple tissues. Additionally, within a single tissue type, transcripts could undergo alternative splicing, yielding multiple isoforms. We believe that the availability of a chromosome-level reference genome for M. rosenbergii along with its full-length transcriptome will be instrumental in advancing our understanding of the giant freshwater prawn biology and enhancing its molecular breeding programs, paving the way for the development of M. rosenbergii with valuable traits in commercial aquaculture.

13.
Se Pu ; 42(7): 601-612, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966969

RESUMO

Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massa com Cromatografia Líquida
14.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38995143

RESUMO

BACKGROUND: Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS: Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION: The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.


Assuntos
Genoma , Masculino , Animais , Feminino , Perciformes/genética , Processos de Determinação Sexual/genética , Cromossomos Sexuais/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Sintenia , Genômica/métodos
15.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996487

RESUMO

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Assuntos
Genoma , Mamutes , Pele , Animais , Mamutes/genética , Genoma/genética , Feminino , Elefantes/genética , Cromatina/genética , Fósseis , DNA Antigo/análise , Camundongos , Humanos , Cromossomo X/genética
16.
Microbiome ; 12(1): 134, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039555

RESUMO

BACKGROUND: Understanding the interactions and dynamics of microbiotas within biological wastewater treatment systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communities within a hybrid biofilm and activated sludge system. RESULTS: We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabolism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes. CONCLUSIONS: The insights gained from this research contribute to the growing body of knowledge surrounding interactions and dynamics of host-phage and pave the way for further exploration and potential applications in the field of microbial ecology. Video Abstract.


Assuntos
Bactérias , Bacteriófagos , Esgotos , Águas Residuárias , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Bacteriófagos/isolamento & purificação , Esgotos/virologia , Esgotos/microbiologia , Águas Residuárias/virologia , Águas Residuárias/microbiologia , Bactérias/virologia , Bactérias/genética , Bactérias/classificação , Biofilmes , Metagenômica , Purificação da Água/métodos , Microbiota
17.
Asian J Psychiatr ; 98: 104118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908214

RESUMO

BACKGROUND: Cross-cultural psychosis research has mostly focused on outcomes, rather than patient and family experiences. Therefore, our aim was to examine differences in patients' and families' experiences of their treating teams in early intervention services for psychosis in Chennai, India [low- and middle-income country] and Montreal, Canada [high-income country]. METHODS: Patients (165 in Chennai, 128 in Montreal) and their families (135 in Chennai, 110 in Montreal) completed Show me you care, a patient- and family-reported experience measure, after Months 3, 12, and 24 in treatment. The measure assesses the extent to which patients and families view treating teams as being supportive. A linear mixed model with longitudinal data from patient and family dyads was used to test the effect of site (Chennai, Montreal), stakeholder (patient, family), and time on Show me you care scores. This was followed by separate linear mixed effect models for patients and families with age and gender, as well as symptom severity and functioning as time-varying covariates. RESULTS: As hypothesized, Chennai patients and families reported more supportive behaviours from their treating teams (ß=4.04; ß= 9, respectively) than did Montreal patients (Intercept =49.6) and families (Intercept=42.45). Higher symptom severity over follow-up was associated with patients reporting lower supportive behaviours from treating teams. Higher levels of positive symptoms (but lower levels of negative symptoms) over follow-up were associated with families reporting lower supportive behaviours from treating teams. There was no effect of time, age, gender and functioning. CONCLUSIONS: The levels to which treating teams are perceived as supportive may reflect culturally shaped attitudes (e.g., warmer attitudes towards healthcare providers in India vis-à-vis Canada) and actual differences in how supportive treating teams are, which too may be culturally shaped. Being expected to be more involved in treatment, Chennai families may receive more attention and support, which may further reinforce their involvement. Across contexts, those who improve over follow-up may see their treating teams more positively.


Assuntos
Família , Transtornos Psicóticos , Humanos , Feminino , Masculino , Índia , Adulto , Transtornos Psicóticos/terapia , Adulto Jovem , Família/psicologia , Quebeque , Canadá , Intervenção Médica Precoce , Serviços de Saúde Mental/estatística & dados numéricos , Adolescente , Comparação Transcultural , Pessoa de Meia-Idade
18.
Int J Biol Macromol ; 273(Pt 1): 133049, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857727

RESUMO

To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.


Assuntos
Hidrolases de Éster Carboxílico , Polietilenoglicóis , Polietilenotereftalatos , Tensoativos , Polietilenotereftalatos/química , Polietilenoglicóis/química , Hidrólise , Tensoativos/química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo
19.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38879873

RESUMO

Genome-wide information has so far been unavailable for ribbon worms of the clade Hoplonemertea, the most species-rich class within the phylum Nemertea. While species within Pilidiophora, the sister clade of Hoplonemertea, possess a pilidium larval stage and lack stylets on their proboscis, Hoplonemertea species have a planuliform larva and are armed with stylets employed for the injection of toxins into their prey. To further compare these developmental, physiological, and behavioral differences from a genomic perspective, the availability of a reference genome for a Hoplonemertea species is crucial. Such data will be highly useful for future investigations toward a better understanding of molecular ecology, venom evolution, and regeneration not only in Nemertea but also in other marine invertebrate phyla. To this end, we herein present the annotated chromosome-level genome assembly for Emplectonema gracile (Nemertea; Hoplonemertea; Monostilifera; Emplectonematidae), an easily collected nemertean well suited for laboratory experimentation. The genome has an assembly size of 157.9 Mb. Hi-C scaffolding yielded chromosome-level scaffolds, with a scaffold N50 of 10.0 Mb and a score of 95.1% for complete BUSCO genes found as a single copy. Annotation predicted 20,684 protein-coding genes. The high-quality reference genome reaches an Earth BioGenome standard level of 7.C.Q50.


Assuntos
Invertebrados , Anotação de Sequência Molecular , Animais , Invertebrados/genética , Cromossomos/genética , Genoma
20.
PNAS Nexus ; 3(6): pgae226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881841

RESUMO

Chromatin, the complex assembly of DNA and associated proteins, plays a pivotal role in orchestrating various genomic functions. To aid our understanding of the principles underlying chromatin organization, we introduce Hi-C metainference, a Bayesian approach that integrates Hi-C contact frequencies into multiscale prior models of chromatin. This approach combines both bottom-up (the physics-based prior) and top-down (the data-driven posterior) strategies to characterize the 3D organization of a target genomic locus. We first demonstrate the capability of this method to accurately reconstruct the structural ensemble and the dynamics of a system from contact information. We then apply the approach to investigate the Sox2, Pou5f1, and Nanog loci of mouse embryonic stem cells using a bottom-up chromatin model at 1 kb resolution. We observe that the studied loci are conformationally heterogeneous and organized as crumpled globules, favoring contacts between distant enhancers and promoters. Using nucleosome-resolution simulations, we then reveal how the Nanog gene is functionally organized across the multiple scales of chromatin. At the local level, we identify diverse tetranucleosome folding motifs with a characteristic distribution along the genome, predominantly open at cis-regulatory elements and compact in between. At the larger scale, we find that enhancer-promoter contacts are driven by the transient condensation of chromatin into compact domains stabilized by extensive internucleosome interactions. Overall, this work highlights the condensed, but dynamic nature of chromatin in vivo, contributing to a deeper understanding of gene structure-function relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA