Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35565400

RESUMO

Hypofractionated radiotherapy is an attractive approach for minimizing patient burden and treatment cost. Technological advancements in external beam radiotherapy (EBRT) delivery and image guidance have resulted in improved targeting and conformality of the absorbed dose to the disease and a reduction in dose to healthy tissue. These advances in EBRT have led to an increasing adoption and interest in hypofractionation. Furthermore, for many treatment sites, proton beam therapy (PBT) provides an improved absorbed dose distribution compared to X-ray (photon) EBRT. In the past 10 years there has been a notable increase in reported clinical data involving hypofractionation with PBT, reflecting the interest in this treatment approach. This review will discuss the reported clinical data and radiobiology of hypofractionated PBT. Over 50 published manuscripts reporting clinical results involving hypofractionation and PBT were included in this review, ~90% of which were published since 2010. The most common treatment regions reported were prostate, lung and liver, making over 70% of the reported results. Many of the reported clinical data indicate that hypofractionated PBT can be well tolerated, however future clinical trials are still needed to determine the optimal fractionation regime.

2.
Radiat Oncol ; 17(1): 54, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303922

RESUMO

BACKGROUND: Prostate cancer (PCa) is known to be suitable for hypofractionated radiotherapy due to the very low α/ß ratio (about 1.5-3 Gy). However, several randomized controlled trials have not shown the superiority of hypofractionated radiotherapy over conventionally fractionated radiotherapy. Besides, in vivo and in vitro experimental results show that the linear-quadratic (LQ) model may not be appropriate for hypofractionated radiotherapy, and we guess it may be due to the influence of fractionation schedules on the α/ß ratio. Therefore, this study attempted to estimate the α/ß ratio in different fractionation schedules and evaluate the applicability of the LQ model in hypofractionated radiotherapy. METHODS: The maximum likelihood principle in mathematical statistics was used to fit the parameters: α and ß values in the tumor control probability (TCP) formula derived from the LQ model. In addition, the fitting results were substituted into the original TCP formula to calculate 5-year biochemical relapse-free survival for further verification. RESULTS: Information necessary for fitting could be extracted from a total of 23,281 PCa patients. A total of 16,442 PCa patients were grouped according to fractionation schedules. We found that, for patients who received conventionally fractionated radiotherapy, moderately hypofractionated radiotherapy, and stereotactic body radiotherapy, the average α/ß ratios were 1.78 Gy (95% CI 1.59-1.98), 3.46 Gy (95% CI 3.27-3.65), and 4.24 Gy (95% CI 4.10-4.39), respectively. Hence, the calculated α/ß ratios for PCa tended to become higher when the dose per fraction increased. Among all PCa patients, 14,641 could be grouped according to the risks of PCa in patients receiving radiotherapy with different fractionation schedules. The results showed that as the risk increased, the k (natural logarithm of an effective target cell number) and α values decreased, indicating that the number of effective target cells decreased and the radioresistance increased. CONCLUSIONS: The LQ model appeared to be inappropriate for high doses per fraction owing to α/ß ratios tending to become higher when the dose per fraction increased. Therefore, to convert the conventionally fractionated radiation doses to equivalent high doses per fraction using the standard LQ model, a higher α/ß ratio should be used for calculation.


Assuntos
Modelos Lineares , Neoplasias da Próstata/radioterapia , Hipofracionamento da Dose de Radiação , Humanos , Masculino
3.
Int J Radiat Biol ; 93(2): 184-193, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27645719

RESUMO

PURPOSE: The molecular effects of focal exposure of limited lung volumes to high-dose per fraction irradiation (HDFR) such as stereotactic body radiotherapy (SBRT) have not been fully characterized. In this study, we used such an irradiation system and identified the genes and proteins after HDFR to mouse lung, similar to those associated with human therapy. METHODS AND MATERIALS: High focal radiation (90 Gy) was applied to a 3-mm volume of the left lung of C57BL6 mice using a small-animal stereotactic irradiator. As well as histological examination for lungs, a cDNA micro array using irradiated lung tissues and a protein array of sera were performed until 4 weeks after irradiation, and radiation-responsive genes and proteins were identified. For comparison, the long-term effects (12 months) of 20 Gy radiation wide-field dose to the left lung were also investigated. RESULTS: The genes ermap, epb4.2, cd200r3 (up regulation) and krt15, hoxc4, gdf2, cst9, cidec, and bnc1 (down-regulation) and the proteins of AIF, laminin, bNOS, HSP27, ß-amyloid (upregulation), and calponin (downregulation) were identified as being responsive to 90 Gy HDFR. The gdf2, cst9, and cidec genes also responded to 20 Gy, suggesting that they are universal responsive genes in irradiated lungs. No universal proteins were identified in both 90 Gy and 20 Gy. Calponin, which was downregulated in protein antibody array analysis, showed a similar pattern in microarray data, suggesting a possible HDFR responsive serum biomarker that reflects gene alteration of irradiated lung tissue. These genes and proteins also responded to the lower doses of 20 Gy and 50 Gy HDFR. CONCLUSIONS: These results suggest that identified candidate genes and proteins are HDFR-specifically expressed in lung damage induced by HDFR relevant to SBRT in humans.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Pulmão/metabolismo , Pulmão/efeitos da radiação , Proteoma/metabolismo , Pneumonite por Radiação/metabolismo , Radiocirurgia/efeitos adversos , Animais , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipofracionamento da Dose de Radiação , Pneumonite por Radiação/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA