Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39195257

RESUMO

Fine inhalable particulate matter (PM) triggers an inflammatory response in the airways and activates mononuclear cells, mediators of tissue homeostasis, and tumour-promoting inflammation. We have assessed ex vivo responses of human monocytes and monocyte-derived macrophages to standardised air pollutants: carbon black, urban dust, and nanoparticulate carbon black, focusing on their pro-inflammatory and DNA-damaging properties. None of the PM (100 µg/mL/24 h) was significantly toxic to the cells, aside from inducing oxidative stress, fractional DNA damage, and inhibiting phagocytosis. TNFα was only slightly increased. PM nanoparticles increase the expression and activate DNA-damage-related histone H2A.X as well as pro-inflammatory NF-κB. We have shown that the urban dust stimulates the pathway of DNA damage/repair via the selective post-translational phosphorylation of H2A.X while nanoparticulate carbon black increases inflammation via activation of NF-κB. Moreover, the inflammatory response to lipopolysaccharide was significantly stronger in macrophages pre-exposed to urban dust or nanoparticulate carbon black. Our data show that airborne nanoparticles induce PM-specific, epigenetic alterations in the subsets of cultured mononuclear cells, which may be quantified using binary fluorescence scatterplots. Such changes intercede with inflammatory signalling and highlight important molecular and cell-specific epigenetic mechanisms of tumour-promoting inflammation.


Assuntos
Poluentes Atmosféricos , Inflamação , NF-kappa B , Nanopartículas , Neoplasias , Material Particulado , Transdução de Sinais , Fuligem , Humanos , Inflamação/patologia , Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nanopartículas/química , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Material Particulado/toxicidade , Fuligem/toxicidade , Fuligem/efeitos adversos , NF-kappa B/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Histonas/metabolismo , Dano ao DNA , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
2.
Pathol Res Pract ; 260: 155391, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850878

RESUMO

BACKGROUND: Our previous study has shown that intrahepatic necroinflammation favors the eliminations of HBV integration and clonal hepatocytes. Here, the effect of inflammation on host DNA damage eliminations in liver biopsy tissues from patients with chronic hepatitis B (CHB) was further investigated. METHODS: DNA damage markers, histone γ-H2AX and phosphorylated heterochromatin protein 1γ (p-HP1γ), and senescent marker p21 were detected using immunohistochemical and immunofluorescent assays in liver biopsy samples from 69 CHB patients and 12 liver cirrhosis (LC) patients. Twenty paired hepatocellular carcinoma (HCC) surgical samples were used as controls. RESULTS: Both γ-H2AX and p-HP1γ were sensitively detected in nuclear and cytoplasmic/nuclear patterns. Nuclear γ-H2AX was superior as a DNA damage marker in hepatocytes. The level of nuclear γ-H2AX in CHB, comparable to those in LC and HCC, was correlated with liver fibrosis and coexisted with the senescent marker p21. However, hepatocytes carried an alleviated level of DNA damages, which was associated with the level of cytoplasmic γ-H2AX. Cytoplasmic γ-H2AX chiefly occurred in hepatocytes near necroinflammatory foci, was correlated with liver inflammation and usually indicated the decrease or disappearance of nuclear γ-H2AX. The lack of cytoplasmic γ-H2AX together with the high level of nuclear γ-H2AX was associated with the progression from large cell changes/dysplasia to small cell changes/dysplasia. CONCLUSIONS: Hepatocytes in CHB already carry massive DNA damages and undergo cellular senescence. The DNA damages in those senescent hepatocytes are histopathologically demonstrated to be amended by a novel cytoplasmic γ-H2AX-indicated and inflammation-driven rescue repair mechanism, which may be involved in hepatocarcinogenesis if it works improperly.


Assuntos
Dano ao DNA , Hepatite B Crônica , Hepatócitos , Histonas , Humanos , Hepatócitos/patologia , Hepatócitos/metabolismo , Hepatite B Crônica/patologia , Histonas/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto , Feminino , Inflamação/patologia , Inflamação/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Cirrose Hepática/metabolismo , Homólogo 5 da Proteína Cromobox , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Reparo do DNA , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
3.
J Pathol ; 263(3): 386-395, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38801208

RESUMO

While increased DNA damage is a well-described feature of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), it is unclear whether all lineages and all regions of the marrow are homogeneously affected. In this study, we performed immunohistochemistry on formalin-fixed, paraffin-embedded whole-section bone marrow biopsies using a well-established antibody to detect pH2A.X (phosphorylated histone variant H2A.X) that recognizes DNA double-strand breaks. Focusing on TP53-mutated and complex karyotype MDS/AML, we find a greater pH2A.X+ DNA damage burden compared to TP53 wild-type neoplastic cases and non-neoplastic controls. To understand how double-strand breaks vary between lineages and spatially in TP53-mutated specimens, we applied a low-multiplex immunofluorescence staining and spatial analysis protocol to visualize pH2A.X+ cells with p53 protein staining and lineage markers. pH2A.X marked predominantly mid- to late-stage erythroids, whereas early erythroids and CD34+ blasts were relatively spared. In a prototypical example, these pH2A.X+ erythroids were organized locally as distinct colonies, and each colony displayed pH2A.X+ puncta at a synchronous level. This highly coordinated immunophenotypic expression was also seen for p53 protein staining and among presumed early myeloid colonies. Neighborhood clustering analysis showed distinct marrow regions differentially enriched in pH2A.X+/p53+ erythroid or myeloid colonies, indicating spatial heterogeneity of DNA-damage response and p53 protein expression. The lineage and architectural context within which DNA damage phenotype and oncogenic protein are expressed is relevant to current therapeutic developments that leverage macrophage phagocytosis to remove leukemic cells in part due to irreparable DNA damage. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Mutação , Síndromes Mielodisplásicas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Pessoa de Meia-Idade , Dano ao DNA , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Idoso , Feminino , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Histonas/genética , Medula Óssea/patologia , Medula Óssea/metabolismo , Idoso de 80 Anos ou mais , Imuno-Histoquímica
4.
EMBO Rep ; 25(4): 1936-1961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438802

RESUMO

Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.


Assuntos
Dano ao DNA , Proteínas Nucleares , Animais , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação/genética , Reparo do DNA
5.
Respir Physiol Neurobiol ; 316: 104140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586603

RESUMO

Fine airborne particulate matter enter the respiratory system, induce oxidative stress and initiate DNA damage. The aim of our study was the estimation of cell viability, oxidative stress, DNA damage, cell cycle alterations and activation of histone H2A.X. Experiments were done on lung alveolar epithelial (A549) cells grown for 24 h with 200 µg mL-1 coarse carbon black (CB), or nanoparticulate CB (NPCB). Neither CB nor glutathione depletion altered cell viability, growth rates, and H2A.X expression while NPCB decreased cell viability, increased oxidative stress and DNA damage. The cell cycle was blocked at G0/G1. NPCB but not CB increased expression and activation of H2A.X at mRNA and protein levels. Co-expression data point to γH2A.X as a major NPCB target, and show the interdependence of γH2A.X and oxidative stress. We conclude, that NPCB increases γ-H2A.X expression in A549 cells at mRNA and protein levels and stimulates H2A.X (Ser139), phosphorylation, associated with oxidative stress, the DNA damage response and G1 cell cycle arrest.


Assuntos
Células Epiteliais Alveolares , Histonas , Fuligem/toxicidade , Fuligem/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo
6.
Cardiovasc Res ; 118(17): 3360-3373, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35258628

RESUMO

AIMS: Cardiotoxicity by doxorubicin predicts worse prognosis of patients. Accumulation of damaged DNA has been implicated in doxorubicin-induced cardiotoxicity. SIRT1, an NAD+-dependent histone/protein deacetylase, protects cells by deacetylating target proteins. We investigated whether SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating Ser139 phosphorylation of histone H2AX, a critical signal of the DNA damage response. METHODS AND RESULTS: Doxorubicin (5 mg/kg per week, x4) was administered to mice with intact SIRT1 (Sirt1f/f) and mice that lack SIRT1 activity in cardiomyocytes (Sirt1f/f;MHCcre/+). Reductions in left ventricular fractional shortening and ejection fraction by doxorubicin treatment were more severe in Sirt1f/f;MHCcre/+ than in Sirt1f/f. Myocardial expression level of type-B natriuretic peptide was 2.5-fold higher in Sirt1f/f;MHCcre/+ than in Sirt1f/f after doxorubicin treatment. Sirt1f/f;MHCcre/+ showed larger fibrotic areas and higher nitrotyrosine levels in the heart after doxorubicin treatment. Although doxorubicin-induced DNA damage evaluated by TUNEL staining was enhanced in Sirt1f/f;MHCcre/+, the myocardium from Sirt1f/f;MHCcre/+ showed blunted Ser139 phosphorylation of H2AX by doxorubicin treatment. In H9c2 cardiomyocytes, SIRT1 knockdown attenuated Ser139 phosphorylation of H2AX, increased DNA damage, and enhanced caspase-3 activation under doxorubicin treatment. Immunostaining revealed that acetylation level of H2AX at Lys5 was higher in hearts from Sirt1f/f;MHCcre/+. In H9c2 cells, acetyl-Lys5-H2AX level was increased by SIRT1 knockdown and reduced by SIRT1 overexpression. Ser139 phosphorylation in response to doxorubicin treatment was blunted in a mutant H2AX with substitution of Lys5 to Gln (K5Q) that mimics acetylated lysine compared with that in wild-type H2AX. Expression of K5Q-H2AX as well as S139A-H2AX, which cannot be phosphorylated at Ser139, augmented doxorubicin-induced caspase-3 activation. Treatment of mice with resveratrol, a SIRT1 activator, attenuated doxorubicin-induced cardiac dysfunction, which was associated with a reduction in acetyl-Lys5-H2AX level and a preserved phospho-Ser139-H2AX level. CONCLUSION: These findings suggest that SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating H2AX phosphorylation through its deacetylation in cardiomyocytes.


Assuntos
Histonas , Miócitos Cardíacos , Camundongos , Animais , Histonas/metabolismo , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Caspase 3/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Doxorrubicina/toxicidade , Apoptose
7.
Mol Cell Biol ; 42(11): e0037922, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36278823

RESUMO

NAD+ synthesis is a fundamental process in living cells. The effects of local metabolite production on chromatin influence the epigenetic status of chromatin in DNA metabolism. We have previously shown that K5 acetylation of H2AX by TIP60 is required for the ADP ribosylation activity of PARP-1, for histone H2AX exchange at DNA damage sites. However, the detailed molecular mechanism has remained unclear. Here, we identified de novo NAD synthetase 1 (NAD syn1) as a novel binding partner to H2AX. The enzymatic activity of NAD syn1 is crucial for the ADP ribosylation activity of PARP-1 for the H2AX dynamics at sites of DNA damage. Inhibition of the NAD synthetase activity in the cell nucleus decreased the overall cellular NAD+ concentration, leading to cellular senescence. Accordingly, the acetylation-dependent H2AX dynamics and homologous recombination repair were suppressed, leading to increased tumorigenesis. Our findings have revealed the importance of de novo NAD+ production in the cell nucleus for protection against the decreased DNA repair capacity caused by cellular senescence and thus against tumorigenesis.


Assuntos
Histonas , NAD , Humanos , Histonas/metabolismo , NAD/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo do DNA , Cromatina , Dano ao DNA , Núcleo Celular/metabolismo , Senescência Celular , Carcinogênese
8.
Front Immunol ; 12: 760322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745135

RESUMO

After the Fukushima Daiichi Nuclear Power Plant accident, there is growing concern about radiation-induced carcinogenesis. In addition, living in a long-term shelter or temporary housing due to disasters might cause unpleasant stress, which adversely affects physical and mental health. It's been experimentally demonstrated that "eustress", which is rich and comfortable, has beneficial effects for health using mouse models. In a previous study, mice raised in the enriched environment (EE) has shown effects such as suppression of tumor growth and enhancement of drug sensitivity during cancer treatment. However, it's not yet been evaluated whether EE affects radiation-induced carcinogenesis. Therefore, to evaluate whether EE suppresses a radiation-induced carcinogenesis after radiation exposure, in this study, we assessed the serum leptin levels, radiation-induced DNA damage response and inflammatory response using the mouse model. In brief, serum and tissues were collected and analyzed over time in irradiated mice after manipulating the raising environment during the juvenile or adult stage. To assess the radiation-induced DNA damage response, we performed immunostaining for phosphorylated H2AX which is a marker of DNA double-strand break. Focusing on the polarization of macrophages in the inflammatory reaction that has an important role in carcinogenesis, we performed analysis using tissue immunofluorescence staining and RT-qPCR. Our data confirmed that EE breeding before radiation exposure improved the responsiveness to radiation-induced DNA damage and basal immunity, further suppressing the chronic inflammatory response, and that might lead to a reduction of the risk of radiation-induced carcinogenesis.


Assuntos
Meio Ambiente , Lesões Experimentais por Radiação , Raios X/efeitos adversos , Animais , Arginase/genética , Dano ao DNA , Reparo do DNA , Regulação da Expressão Gênica/efeitos da radiação , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Leptina/sangue , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Masculino , Camundongos , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/imunologia , Fator de Necrose Tumoral alfa/genética
9.
Oncol Lett ; 22(1): 503, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33986864

RESUMO

Radiotherapy is an effective therapeutic strategy in esophageal squamous cell carcinoma (ESCC). However, acquired radioresistance of cancer cells leads to radiotherapy failure. The present study aimed to investigate the mechanisms of the effect of high mobility group box 1 (HMGB1) on the radiation sensitivity of ESCC. Small interfering RNA (si) transfection was used to generate three groups of TE-1 cells (TE-1, negative control and TE-1+siHMGB1), and the protein expression levels of HMGB1 in TE-1 cells were detected by western blotting. These groups of TE-1 cells were irradiated with different doses (0, 2, 4, 6 and 8 Gy) of X-rays after transfection. Subsequently, the viability of TE-1 cells was detected using an MTT assay, and the survival fraction of TE-1 cells was observed using a colony formation assay. The apoptotic rate, reactive oxygen species (ROS) content and levels of phosphorylated (p)-histone H2AX at S139 (p-γH2AX) of the cells were detected by flow cytometry. The alterations in mRNA expression levels of nicotinamide adenine nucleotide phosphate oxidase (NOX)1 and NOX5 were detected by reverse transcription-quantitative PCR, while the changes in protein levels of caspase-3, poly(ADP-ribose) polymerase, p-p38, p-ERK1/2 and p-JNK were detected by western blotting. The results revealed that HMGB1 knockdown significantly decreased cell viability, and the apoptosis rate of TE-1 cells transfected with siHMGB1 combined with radiation treatment was increased compared with that in cells with either siHMGB1 transfection or radiation treatment alone. HMGB1 knockdown increased nicotinamide adenine nucleotide phosphate oxidase-mediated ROS production and induced DNA damage via the MAPK signaling pathway, which may promote apoptosis and radiosensitivity after radiation in TE-1 cells. In conclusion, targeting HMGB1 may represent a promising strategy to increase the efficacy of radiation therapy for ESCC.

10.
Oncol Lett ; 21(3): 187, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33574926

RESUMO

Histone H2AX (H2A.X) is a variant of the histone H2A family. Phosphorylation of H2A.X is a marker of DNA strand breaks and the presence or absence of H2A.X is closely related to tumor susceptibility and drug resistance. The present study found that the activity of the serine/threonine kinase Akt was negatively associated with H2A.X phosphorylated at the Ser16 site (H2A.X S16ph), but the mechanism of the inverse relationship remains elusive. The aim of the present study was to elucidate the mechanism of action between Akt and H2A.X S16ph and the exact role of this mechanism. Western blot analysis was performed to detect the regulatory association between p-Akt and H2A.X S16ph/p-RSK2, and immunoprecipitation and chromatin immunoprecipitation were performed to prove that Akt, RSK2 and H2A.X combine and interact in human breast cancer cells. The changes of cellular proliferation and migration induced by the interaction of Akt, RSK2 and H2A.X was determined by MTT, soft agar colony formation and cell migration experiments. The effect of interaction of Akt, RSK2 and H2A.X on cancer-promoting genes, such as PSAT-1 was determined via reverse transcription-quantitative PCR analysis. The current study indicated that the serine/threonine kinase ribosomal S6 kinase 2 (RSK2) as a kinase of H2A.X could be phosphorylated by Akt at Ser19 site. Moreover, Akt positively regulated the phosphorylation of RSK2 to inhibit phosphorylation of H2A.X, thereby affecting the affinity between RSK2 and substrate histone, promoting the survival and migration of breast cancer cells. In conclusion, Akt-mediated phosphorylation of RSK2 regulated the phosphorylation of H2A.X, thereby promoting oncogenic activity. This finding provides new insights to understand the pathogenesis and treatment mechanisms of breast cancer.

11.
Comput Struct Biotechnol J ; 19: 6465-6480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976305

RESUMO

DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.

12.
Toxicol In Vitro ; 66: 104880, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32387221

RESUMO

Recently, it was reported that ten cases of bladder cancer occurred among employees, who handled several kinds of aromatic amines, at a Japanese chemical plant. The common aromatic amines were identified as ortho-toluidine, para-toluidine, aniline, ortho-chloroaniline, ortho-anisidine, and 2,4-dimethylaniline. All of these aromatic amines, except ortho-chloroaniline, have been found to be carcinogenic in animals and/or humans. Genotoxic events are known to be crucial steps in the initiation of cancer; information on the genotoxicity of these aromatic amines is insufficient and consistent results have not been obtained. In this study, we examined the genotoxicity of the six different aromatic amines associated with bladder cancer by assessing phosphorylated histone H2AX (γ-H2AX) in a cultured human urothelial cell line, 1T1. We showed that all six aromatic amines generated γ-H2AX. In addition, the γ-H2AX-inducing potential of these six aromatic amines was distinctly different; ortho-chloroaniline and 2,4-dimethylaniline showed particularly high potential, followed by ortho-toluidine, ortho-anisidine, para-toluidine ≒ aniline. The findings of this study may provide important information for the risk assessment of chemicals and for interpreting epidemiological studies on occupational bladder cancer.


Assuntos
Compostos de Anilina/toxicidade , Dano ao DNA , Histonas/metabolismo , Mutagênicos/toxicidade , Urotélio/citologia , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos
13.
BMC Cancer ; 19(1): 299, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943918

RESUMO

BACKGROUND: Most tumor cells show aberrantly activated Akt which leads to increased cell survival and resistance to cancer radiotherapy. Therefore, targeting Akt can be a promising strategy for radiosensitization. Here, we explore the impact of the Akt inhibitor MK-2206 alone and in combination with the dual PI3K and mTOR inhibitor PI-103 on the radiation sensitivity of glioblastoma cells. In addition, we examine migration of drug-treated cells. METHODS: Using single-cell tracking and wound healing migration tests, colony-forming assay, Western blotting, flow cytometry and electrorotation we examined the effects of MK-2206 and PI-103 and/or irradiation on the migration, radiation sensitivity, expression of several marker proteins, DNA damage, cell cycle progression and the plasma membrane properties in two glioblastoma (DK-MG and SNB19) cell lines, previously shown to differ markedly in their migratory behavior and response to PI3K/mTOR inhibition. RESULTS: We found that MK-2206 strongly reduces the migration of DK-MG but only moderately reduces the migration of SNB19 cells. Surprisingly, MK-2206 did not cause radiosensitization, but even increased colony-forming ability after irradiation. Moreover, MK-2206 did not enhance the radiosensitizing effect of PI-103. The results appear to contradict the strong depletion of p-Akt in MK-2206-treated cells. Possible reasons for the radioresistance of MK-2206-treated cells could be unaltered or in case of SNB19 cells even increased levels of p-mTOR and p-S6, as compared to the reduced expression of these proteins in PI-103-treated samples. We also found that MK-2206 did not enhance IR-induced DNA damage, neither did it cause cell cycle distortion, nor apoptosis nor excessive autophagy. CONCLUSIONS: Our study provides proof that MK-2206 can effectively inhibit the expression of Akt in two glioblastoma cell lines. However, due to an aberrant activation of mTOR in response to Akt inhibition in PTEN mutated cells, the therapeutic window needs to be carefully defined, or a combination of Akt and mTOR inhibitors should be considered.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Dano ao DNA , Furanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mutação , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Análise de Célula Única , Serina-Treonina Quinases TOR/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(15): 7471-7476, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910969

RESUMO

Phosphorylation of histone H2AX is a major contributor to efficient DNA repair. We recently reported neurobehavioral deficits in mice lacking H2AX. Here we establish that this neural failure stems from impairment of mitochondrial function and repression of the mitochondrial biogenesis gene PGC-1α. H2AX loss leads to reduced levels of the major subunits of the mitochondrial respiratory complexes in mouse embryonic fibroblasts and in the striatum, a brain region particularly vulnerable to mitochondrial damage. These defects are substantiated by disruption of the mitochondrial shape in H2AX mutant cells. Ectopic expression of PGC-1α restores mitochondrial oxidative phosphorylation complexes and mitigates cell death. H2AX knockout mice display increased neuronal death in the brain when challenged with 3-nitropronionic acid, which targets mitochondria. This study establishes a role for H2AX in mitochondrial homeostasis associated with neuroprotection.


Assuntos
Histonas/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa , Animais , Morte Celular , Transporte de Elétrons/fisiologia , Histonas/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação
15.
Methods Mol Biol ; 1894: 145-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30547460

RESUMO

DNA double-strand breaks (DSBs), one of the most severe lesions of DNA damage triggered by various genotoxic insults, can lead to chromosome change, genomic instability, and even tumorigenesis if not repaired efficiently. In response to DNA damage, histone H2AX molecules are rapidly phosphorylated at serine 139 near the site of DNA DSBs and form γ-H2AX foci. As an early important cellular event linked to DNA damage and repair, γ-H2AX is a highly sensitive biomarker for "monitoring" DNA damage and consequently is a useful tool in genetic toxicology screen. We and other researchers have used γ-H2AX as a marker to assess the potential genotoxic effects of some nanoparticles in vitro and in vivo. In this chapter, we describe several useful methods for γ-H2AX detection, which can be used to evaluate the potential genotoxic effects of nanoparticles.


Assuntos
Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Nanopartículas/toxicidade , Western Blotting/instrumentação , Western Blotting/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Imunofluorescência/instrumentação , Imunofluorescência/métodos , Histonas/isolamento & purificação , Humanos , Testes de Mutagenicidade/instrumentação , Testes de Mutagenicidade/métodos , Fosforilação , Serina/metabolismo
16.
Arch Toxicol ; 92(10): 3093-3101, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30132044

RESUMO

The Japanese Ministry of Health, Labour, and Welfare recently reported an outbreak of bladder cancer among workers who handled aromatic amines in Japan. 2,4-dimethylaniline (2,4-DMA) is one of the chemicals that workers are considered to have the most opportunities to be exposed. Genotoxic events are known to be crucial steps in the initiation of cancer. However, studies on the genotoxicity of 2,4-DMA are limited, particularly studies investigating the mechanism behind the genotoxicity by 2,4-DMA are completely lacking. We examined genotoxic properties of 2,4-DMA using phosphorylated histone H2AX (γ-H2AX), a sensitive and reliable marker of DNA damage, in cultured human urothelial and hepatic cells. Our results clearly showed that 2,4-DMA at a concentration range of 1-10 mM generates γ-H2AX in both cell lines, indicating that 2,4-DMA is genotoxic. During mechanistic investigation, we found that 2,4-DMA boosts intracellular reactive oxygen species, an effect clearly attenuated by disulfiram, a strong inhibitor of cytochrome P450 2E1 (CYP2E1). In addition, CYP2E1 inhibitors and the antioxidant, N-acetylcysteine, also attenuated γ-H2AX generation following exposure to 2,4-DMA. Collectively, these results suggest that γ-H2AX is formed following exposure to 2,4-DMA via reactive oxygen species produced by CYP2E1-mediated metabolism. Continuous exposure to genotoxic aromatic amines such as 2,4-DMA over a long period of time may have contributed to the development of bladder cancer. Our results provide important insights into the carcinogenicity risk of 2,4-DMA in occupational bladder cancer outbreaks at chemical plants in Japan.


Assuntos
Compostos de Anilina/toxicidade , Família 2 do Citocromo P450/metabolismo , Hepatócitos/efeitos dos fármacos , Histonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Ureter/citologia
17.
Toxicol Appl Pharmacol ; 355: 238-246, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006243

RESUMO

DNA double-strand breaks (DSBs) are a highly toxic form of DNA damage produced by a number of carcinogens, drugs, and metabolic abnormalities. Involvement of DSBs in many pathologies has led to frequent measurements of these lesions, primarily via biodosimetry of S139-phosphorylated histone H2AX (γ-H2AX). However, γ-H2AX is also induced by some non-DSB conditions and abundantly formed in apoptosis, raising concerns about the overestimation of potential genotoxic agents and accuracy of DSB assessments. DSB-triggered γ-H2AX undergoes RNF168-mediated K13/K15 monoubiquitination, which is rarely analyzed in DSB/genotoxicity studies. Here we identified critical methodological factors that are necessary for the efficient detection of mono- (ub1) and diubiquitinated (ub2) γ-H2AX. Using optimized technical conditions, we found that γ-H2AX-ub1 was a predominant form of γ-H2AX in three primary human cell lines containing mechanistically distinct types of DSBs. Replication stress-associated DSBs also triggered extensive formation of γ-H2AX-ub1. For DSBs induced by oxidative damage or topoisomerase II, both γ-H2AX and γ-H2AX-ub1 showed dose-dependent increases whereas γ-H2AX-ub2 plateaued at low levels of breaks. Despite abundance of γ-H2AX, γ-H2AX-ub1,2 formation was blocked in apoptosis, which was associated with proteolytic cleavage of RNF168. Chromatin damage also caused only the production of γ-H2AX but not its ub1,2 forms. Our results revealed a major contribution of ubiquitinated forms to the overall γ-H2AX response and demonstrated the specificity of monoubiquitinated γ-H2AX as a biodosimeter of non-apoptotic DSBs.


Assuntos
Biomarcadores/análise , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Histonas/metabolismo , Ubiquitinação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Cromatina/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Resposta ao Choque Térmico , Histonas/genética , Humanos , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco
18.
J Appl Toxicol ; 38(9): 1224-1232, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29722447

RESUMO

Trichloroethylene (TCE), a chlorinated hydrocarbon, was recently reclassified as a human carcinogen by the International Agency for Research on Cancer. Genotoxic events are known to be crucial steps in the initiation of cancer. The genotoxic properties of TCE have been examined in many studies using a standard battery of genotoxicity tests both in vitro and in vivo. However, consistent results have not been obtained, and studies investigating the mechanism behind the genotoxicity of this compound are lacking. In the present study, we examined the genotoxicity of TCE by assessing phosphorylated histone H2AX (γ-H2AX), a new sensitive and reliable marker of DNA damage, in WRL-68 cells, cultured human hepatocytes and mouse livers. Our results showed that TCE exposure results in the generation of γ-H2AX, both in vitro and in vivo. By investigating the in vitro mechanism, we found that TCE increases the levels of intracellular reactive oxygen species (ROS) and that this increase in ROS levels is attenuated in the presence of disulfiram, a specific cytochrome P450 2E1 (CYP2E1) inhibitor. Furthermore, γ-H2AX induced by TCE was also attenuated by CYP2E1 inhibitors and the antioxidant N-acetylcysteine. These results suggested that ROS, produced via cytochrome P450 2E1-mediated metabolic processing, is a major causal factor for γ-H2AX generation upon exposure to TCE.


Assuntos
Carcinógenos/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Quebras de DNA de Cadeia Dupla , Hepatócitos/efeitos dos fármacos , Histonas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tricloroetileno/toxicidade , Animais , Antioxidantes/farmacologia , Linhagem Celular , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco
19.
Biomed Pharmacother ; 98: 873-885, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29571258

RESUMO

Brazilian Northeast is the world's largest producer of Agave sisalana Perrine for the supply of the sisal fiber. About 95% of plant biomass, which comprise the mucilage and sisal juice, is considered a waste residual is discarded in the soil. However, the sisal juice is rich in steroidal saponins, which exhibits different pharmacological properties. Despite this, natural products are not necessarily safe. Based on this, this study analyzed the antioxidant, cytotoxic and mutagenic potential of three extracts derived from acid hydrolysis (AHAS), dried precipitate (DPAS) and hexanic of A. sisalana (HAS). These analyses were performed by in vitro and in vivo methods, using Vero cells, human lymphocytes and mice. Results showed that AHAS 50 and 100 can be considered a useful antineoplastic candidate due to their antioxidant and cytotoxic activity, with no genotoxic/clastogenic potential in Vero cells and mice. Although the comet assay in human lymphocytes has showed that the AHAS 25, AHAS 50 and AHAS 100 can lead to DNA breaks, these extracts did not promote DNA damages in mice bone marrow. Considering the different mutagenic responses obtained with the different methods employed, this study suggest that the metabolizing pathways can produce by-products harmful to health. For this reason, it is mandatory to analyze the mutagenic potential by both in vitro and in vivo techniques, using cells derived from different species and origins.


Assuntos
Agave/química , Antioxidantes/farmacologia , Eritrócitos/metabolismo , Linfócitos/metabolismo , Mutagênese , Extratos Vegetais/farmacologia , Animais , Anexina A5/metabolismo , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fluoresceínas/metabolismo , Histonas/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Folhas de Planta/química , Propídio/metabolismo , Saponinas/análise , Células Vero
20.
Part Fibre Toxicol ; 14(1): 38, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923112

RESUMO

BACKGROUND: We and other groups have demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused oxidative stress and inflammation, which have been shown to be strongly associated with genotoxic and carcinogenic effects. However, few studies have reported Nano-Co-induced genotoxic effects in vivo. Here, we propose that Nano-Co may have high genotoxic effects due to their small size and high surface area, which have high capacity for causing oxidative stress and inflammation. METHODS: gpt delta transgenic mice were used as our in vivo study model. They were intratracheally instilled with 50 µg per mouse of Nano-Co. At day 1, 3, 7 and 28 after exposure, bronchoalveolar lavage (BAL) was performed and the number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BAL fluid (BALF) were determined. Mouse lung tissues were collected for H&E staining, and Ki-67, PCNA and γ-H2AX immunohistochemical staining. 8-OHdG level in the genomic DNA of mouse lungs was determined by an OxiSelect™ Oxidative DNA Damage ELISA Kit, and mutant frequency and mutation spectrum in the gpt gene were also determined in mouse lungs at four months after Nano-Co exposure by 6-TG selection, colony PCR, and DNA sequencing. RESULTS: Exposure of mice to Nano-Co (50 µg per mouse) resulted in extensive acute lung inflammation and lung injury which were reflected by increased number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BALF, and infiltration of large amount of neutrophils and macrophages in the alveolar space and interstitial tissues. Increased immunostaining of cell proliferation markers, Ki-67 and PCNA, and the DNA damage marker, γ-H2AX, was also observed in bronchiolar epithelial cells and hyperplastic type II pneumocytes in mouse lungs at day 7 after Nano-Co exposure. At four months after exposure, extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa were observed. Moreover, Nano-Co caused increased level of 8-OHdG in genomic DNA of mouse lung tissues. Nano-Co also induced a much higher mutant frequency as compared to controls, and the most common mutation was G:C to T:A transversion, which may be explained by Nano-Co-induced increased formation of 8-OHdG. CONCLUSION: Our study demonstrated that exposure to Nano-Co caused oxidative stress, lung inflammation and injury, and cell proliferation, which further resulted in DNA damage and DNA mutation. These findings have important implications for understanding the potential health effects of nanoparticle exposure.


Assuntos
Cobalto/toxicidade , Dano ao DNA , Exposição por Inalação/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Camundongos Transgênicos , Mutação , Estresse Oxidativo/genética , Tamanho da Partícula , Pentosiltransferases/genética , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA