Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Math Biosci ; : 109304, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368545

RESUMO

Alveolar echinococcosis, transmitted between definitive hosts and intermediate hosts via predation, threatens the health of humans and causes great economic losses in western China. In order to explore the transmission mechanism of this disease, an eco-epidemiological lifecycle model is formulated to illustrate interactions between two hosts. The basic and demographic reproduction numbers are developed to characterize the stability of the disease-free and endemic equilibria as well as bifurcation dynamics. The existence of forward bifurcation and Hopf bifurcation are confirmed and are used to explain the threshold transmission dynamics. Numerical simulations and bifurcation diagrams are also presented to depict rich dynamics of the model. Numerical analysis suggests that improving the control rate of voles will reduce the risk of transmission, while the high predation rate of foxes may also lead to a lower transmission risk, which is different from the predictions of previous studies. The evaluation of three control measures on voles implies that, when the fox's predation rate is low (high), the chemical (integrated) control will be more effective.

2.
J Comput Biol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263809

RESUMO

This study provides a comprehensive analysis of the dynamics of a three-level vertical food chain model, specifically focusing on the interactions between vegetation, herbivores, and predators in a Snowshoe hare-Canadian lynx system. By simplifying the model through dimensional analysis, we determine conditions for equilibrium existence and identify various types of bifurcations, including Saddle-Node and Hopf bifurcations. Additionally, the study explores codimension-two bifurcations such as Bogdanov-Takens (BT) and zero-Hopf bifurcations. Coefficient formulas of normal forms are derived through the use of center manifold reduction and normal form theory. The study also presents an approximation of homoclinic orbits near a BT bifurcation of the system by computing explicit asymptotics based on regular perturbation methods. Utilizing the MATLAB package MATCONT, a family of limit cycles and their associated bifurcations are computed, including limit point cycles, period-doubling bifurcations, cusp points of cycles, fold-flip bifurcations, and various resonance bifurcations (R1, R2, R3, and R4). The biological implications of the findings are discussed in detail, highlighting how the identified bifurcations and dynamics can impact the population dynamics of vegetation, herbivores, and predators in real-world ecosystems. Numerical experiments validate the theoretical results and provide further support for the conclusions.

3.
J Biol Dyn ; 18(1): 2394665, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39238481

RESUMO

The dynamics of tuberculosis transmission model with different genders are to be established and studied. The basic regeneration numbers R0=RF+RM are to be defined, where RF and RM to be the basic reproduction number of tuberculosis transmission in female and male populations, respectively. The existence and global stability of the disease-free equilibrium was discussed when R0<1. The global dynamic behaviours of the corresponding limit system under some conditions are to be provided, including the existence, uniqueness, and global stability of the disease-free equilibrium and endemic equilibrium. The numerical simulation shows that the endemic equilibrium may be unique and stable when R0>1, and the system will undergo Hopf bifurcation based on some parameter values. Finally, we applied this model to analyse the transmission of tuberculosis in China, estimated the incidence of tuberculosis in China in 2035, and gave the conclusion that controlling the incidence of tuberculosis in male populations could better reduce the incidence of tuberculosis in China.


Assuntos
Modelos Biológicos , Tuberculose , Humanos , Masculino , Feminino , Tuberculose/transmissão , Tuberculose/epidemiologia , China/epidemiologia , Número Básico de Reprodução , Incidência , Simulação por Computador , Fatores Sexuais
4.
J Math Biol ; 89(4): 38, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240340

RESUMO

Matsuda and Abrams (Theor Popul Biol 45(1):76-91, 1994) initiated the exploration of self-extinction in species through evolution, focusing on the advantageous position of mutants near the extinction boundary in a prey-predator system with evolving foraging traits. Previous models lacked theoretical investigation into the long-term effects of harvesting. In our model, we introduce constant-effort prey and predator harvesting, along with individual logistic growth of predators. The model reveals two distinct evolutionary outcomes: (i) Evolutionary suicide, marked by a saddle-node bifurcation, where prey extinction results from the invasion of a lower forager mutant; and (ii) Evolutionary reversal, characterized by a subcritical Hopf bifurcation, leading to cyclic prey evolution. Employing an innovative approach based on Gröbner basis computation, we identify various bifurcation manifolds, including fold, transcritical, cusp, Hopf, and Bogdanov-Takens bifurcations. These contrasting scenarios emerge from variations in harvesting parameters while keeping other factors constant, rendering the model an intriguing subject of study.


Assuntos
Evolução Biológica , Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Animais , Dinâmica Populacional/estatística & dados numéricos , Extinção Biológica , Simulação por Computador , Mutação , Ecossistema
5.
Math Biosci ; 377: 109302, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276975

RESUMO

Human immunodeficiency virus (HIV) can persist in infected individuals despite prolonged antiretroviral therapy and it may spread through two modes: virus-to-cell and cell-to-cell transmissions. Understanding viral infection dynamics is pivotal for elucidating HIV pathogenesis. In this study, we incorporate the loss term of virions, and both virus-to-cell and cell-to-cell infection modes into a within-host HIV model, which also takes into consideration the proliferation of healthy target cells stimulated by free viruses. By constructing suitable Lyapunov function and applying geometric methods, we establish global stability results of the infection free equilibrium and the infection persistent equilibrium, respectively. Our findings highlight the crucial role of the basic reproduction number in the threshold dynamics. Moreover, we use the loss rate of virions as the bifurcation parameter to investigate stability switches of the positive equilibrium, local Hopf bifurcation, and its global continuation. Numerical simulations validate our theoretical results, revealing rich viral dynamics including backward bifurcation, saddle-node bifurcation, and bistability phenomenon in the sense that the infection free equilibrium and a limit cycle are both locally asymptotically stable. These insights contribute to a deeper understanding of HIV dynamics and inform the development of effective therapeutic strategies.

6.
Acta Biotheor ; 72(3): 11, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223402

RESUMO

Using delay differential equations to study mathematical models of Parkinson's disease and Huntington's disease is important to show how important it is for synchronization between basal ganglia loops to work together. We used the delay circuit RLC (resistor, inductor, capacitor) model to show how the direct pathway and the indirect pathway in the basal ganglia excite and inhibit the motor cortex, respectively. A term has been added to the mathematical model without time delay in the case of the hyperdirect pathway. It is proposed to add a non-linear term to adjust the synchronization. We studied Hopf bifurcation conditions for the proposed models. The desynchronization of response times between the direct pathway and the indirect pathway leads to different symptoms of Parkinson's disease. Tremor appears when the response time in the indirect pathway increases at rest. The simulation confirmed that tremor occurs and the motor cortex is in an inhibited state. The direct pathway can increase the time delay in the dopaminergic pathway, which significantly increases the activity of the motor cortex. The hyperdirect pathway regulates the activity of the motor cortex. The simulation showed bradykinesia occurs when we switch from one movement to another that is less exciting for the motor cortex. A decrease of GABA in the striatum or delayed excitation of the substantia nigra from the subthalamus may be a major cause of Parkinson's disease. An increase in the response time delay in one of the pathways results in the chaotic movement characteristic of Huntington's disease.


Assuntos
Doença de Huntington , Córtex Motor , Doença de Parkinson , Doença de Huntington/fisiopatologia , Doença de Huntington/metabolismo , Humanos , Doença de Parkinson/fisiopatologia , Córtex Motor/fisiopatologia , Dinâmica não Linear , Gânglios da Base/fisiopatologia , Modelos Neurológicos , Modelos Teóricos , Simulação por Computador , Tremor/fisiopatologia
7.
Math Med Biol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287223

RESUMO

In this paper we consider a tumor-immune system interaction model with immune response delay, in which a nonmonotonic function is used to describe immune response to the tumor burden and a time delay is used to represent the time for the immune system to respond and take effect. It is shown that the model may have one, two or three tumor equilibria, respectively, under different conditions. Time delay can only affect the stability of the low tumor equilibrium and local Hopf bifurcation occurs when the time delay passes through a critical value. The direction and stability of the bifurcating periodic solutions are also determined. Moreover, the global existence of periodic solutions is established by using a global Hopf bifurcation theorem. We also observe the existence of relaxation oscillations and complex oscillating patterns driven by the time delay. Numerical simulations are presented to illustrate the theoretical results.

8.
Math Biosci ; 376: 109275, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127095

RESUMO

We model interactions between cancer cells and viruses during oncolytic viral therapy. One of our primary goals is to identify parameter regions that yield treatment failure or success. We show that the tumor size under therapy at a particular time is less than the size without therapy. Our analysis demonstrates two thresholds for the horizontal transmission rate: a "failure threshold" below which treatment fails, and a "success threshold" above which infection prevalence reaches 100% and the tumor shrinks to its smallest size. Moreover, we explain how changes in the virulence of the virus alter the success threshold and the minimum tumor size. Our study suggests that the optimal virulence of an oncolytic virus depends on the timescale of virus dynamics. We identify a threshold for the virulence of the virus and show how this threshold depends on the timescale of virus dynamics. Our results suggest that when the timescale of virus dynamics is fast, administering a more virulent virus leads to a greater reduction in the tumor size. Conversely, when the viral timescale is slow, higher virulence can induce oscillations with high amplitude in the tumor size. Furthermore, we introduce the concept of a "Hopf bifurcation Island" in the parameter space, an idea that has applications far beyond the results of this paper and is applicable to many mathematical models. We elucidate what a Hopf bifurcation Island is, and we prove that small Islands can imply very slowly growing oscillatory solutions.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Terapia Viral Oncolítica/métodos , Humanos , Neoplasias/terapia , Neoplasias/virologia , Vírus Oncolíticos/fisiologia , Modelos Biológicos , Virulência , Conceitos Matemáticos
9.
J Math Biol ; 89(3): 35, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177819

RESUMO

Chronic Myeloid Leukemia is a blood cancer for which standard therapy with Tyrosine-Kinase Inhibitors is successful in the majority of patients. After discontinuation of treatment half of the well-responding patients either present undetectable levels of tumor cells for a long time or exhibit sustained fluctuations of tumor load oscillating at very low levels. Motivated by the consequent question of whether the observed kinetics reflect periodic oscillations emerging from tumor-immune interactions, in this work, we analyze a system of ordinary differential equations describing the immune response to CML where both the functional response against leukemia and the immune recruitment exhibit optimal activation windows. Besides investigating the stability of the equilibrium points, we provide rigorous proofs that the model exhibits at least two types of bifurcations: a transcritical bifurcation around the tumor-free equilibrium point and a Hopf bifurcation around a biologically plausible equilibrium point, providing an affirmative answer to our initial question. Focusing our attention on the Hopf bifurcation, we examine the emergence of limit cycles and analyze their stability through the calculation of Lyapunov coefficients. Then we illustrate our theoretical results with numerical simulations based on clinically relevant parameters. Besides the mathematical interest, our results suggest that the fluctuating levels of low tumor load observed in CML patients may be a consequence of periodic orbits arising from predator-prey-like interactions.


Assuntos
Simulação por Computador , Leucemia Mielogênica Crônica BCR-ABL Positiva , Conceitos Matemáticos , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Humanos , Modelos Imunológicos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Modelos Biológicos , Carga Tumoral/imunologia
10.
Front Neurol ; 15: 1444617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050124

RESUMO

The remarkable signal-detection capabilities of the auditory and vestibular systems have been studied for decades. Much of the conceptual framework that arose from this research has suggested that these sensory systems rest on the verge of instability, near a Hopf bifurcation, in order to explain the detection specifications. However, this paradigm contains several unresolved issues. Critical systems are not robust to stochastic fluctuations or imprecise tuning of the system parameters. Further, a system poised at criticality exhibits a phenomenon known in dynamical systems theory as critical slowing down, where the response time diverges as the system approaches the critical point. An alternative description of these sensory systems is based on the notion of chaotic dynamics, where the instabilities inherent to the dynamics produce high temporal acuity and sensitivity to weak signals, even in the presence of noise. This alternative description resolves the issues that arise in the criticality picture. We review the conceptual framework and experimental evidence that supports the use of chaos for signal detection by these systems, and propose future validation experiments.

11.
Front Netw Physiol ; 4: 1399272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903729

RESUMO

In this paper, we analyze the strong feedback limit of two negative feedback schemes which have proven to be efficient for many biological processes (protein synthesis, immune responses, breathing disorders). In this limit, the nonlinear delayed feedback function can be reduced to a function with a threshold nonlinearity. This will considerably help analytical and numerical studies of networks exhibiting different topologies. Mathematically, we compare the bifurcation diagrams for both the delayed and non-delayed feedback functions and show that Hopf classical theory needs to be revisited in the strong feedback limit.

12.
J Math Biol ; 89(2): 20, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918247

RESUMO

Ordered distributive double phosphorylation is a recurrent motif in intracellular signaling and control. It is either sequential (where the site phosphorylated last is dephosphorylated first) or cyclic (where the site phosphorylated first is dephosphorylated first). Sequential distributive double phosphorylation has been extensively studied and an inequality involving only the catalytic constants of kinase and phosphatase is known to be sufficient for multistationarity. As multistationarity is necessary for bistability it has been argued that these constants enable bistability. Here we show for cyclic distributive double phosphorylation that if its catalytic constants satisfy an analogous inequality, then Hopf bifurcations and hence sustained oscillations can occur. Hence we argue that in distributive double phosphorylation (sequential or distributive) the catalytic constants enable non-trivial dynamics. In fact, if the rate constant values in a network of cyclic distributive double phosphorylation satisfy this inequality, then a network of sequential distributive double phosphorylation with the same rate constant values will show multistationarity-albeit for different values of the total concentrations. For cyclic distributive double phosphorylation we further describe a procedure to generate rate constant values where Hopf bifurcations and hence sustained oscillations can occur. This may, for example, allow for an efficient sampling of oscillatory regions in parameter space. Our analysis is greatly simplified by the fact that it is possible to reduce the network of cyclic distributive double phosphorylation to what we call a network with a single extreme ray. We summarize key properties of these networks.


Assuntos
Modelos Biológicos , Transdução de Sinais , Fosforilação , Transdução de Sinais/fisiologia , Cinética , Catálise , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/química
13.
Bull Math Biol ; 86(8): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896363

RESUMO

Virotherapy treatment is a new and promising target therapy that selectively attacks cancer cells without harming normal cells. Mathematical models of oncolytic viruses have shown predator-prey like oscillatory patterns as result of an underlying Hopf bifurcation. In a spatial context, these oscillations can lead to different spatio-temporal phenomena such as hollow-ring patterns, target patterns, and dispersed patterns. In this paper we continue the systematic analysis of these spatial oscillations and discuss their relevance in the clinical context. We consider a bifurcation analysis of a spatially explicit reaction-diffusion model to find the above mentioned spatio-temporal virus infection patterns. The desired pattern for tumor eradication is the hollow ring pattern and we find exact conditions for its occurrence. Moreover, we derive the minimal speed of travelling invasion waves for the cancer and for the oncolytic virus. Our numerical simulations in 2-D reveal complex spatial interactions of the virus infection and a new phenomenon of a periodic peak splitting. An effect that we cannot explain with our current methods.


Assuntos
Simulação por Computador , Conceitos Matemáticos , Modelos Biológicos , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Humanos , Neoplasias/terapia , Neoplasias/virologia
14.
Cogn Neurodyn ; 18(3): 1359-1378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826645

RESUMO

In this paper, we develop a new cortex-pallidum model to study the origin mechanism of Parkinson's oscillations in the cortex. In contrast to many previous models, the globus pallidus internal (GPi) and externa (GPe) both exert direct inhibitory feedback to the cortex. Using Hopf bifurcation analysis, two new critical conditions for oscillations, which can include the self-feedback projection of GPe, are obtained. In this paper, we find that the average discharge rate (ADR) is an important marker of oscillations, which can divide Hopf bifurcations into two types that can uniformly be used to explain the oscillation mechanism. Interestingly, the ADR of the cortex first increases and then decreases with increasing coupling weights that are projected to the GPe. Regarding the Hopf bifurcation critical conditions, the quantitative relationship between the inhibitory projection and excitatory projection to the GPe is monotonically increasing; in contrast, the relationship between different coupling weights in the cortex is monotonically decreasing. In general, the oscillation amplitude is the lowest near the bifurcation points and reaches the maximum value with the evolution of oscillations. The GPe is an effective target for deep brain stimulation to alleviate oscillations in the cortex.

15.
Cogn Neurodyn ; 18(3): 1379-1396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826673

RESUMO

The dynamics of integer-order Cohen-Grossberg neural networks with time delays has lately drawn tremendous attention. It reveals that fractional calculus plays a crucial role on influencing the dynamical behaviors of neural networks (NNs). This paper deals with the problem of the stability and bifurcation of fractional-order Cohen-Grossberg neural networks (FOCGNNs) with two different leakage delay and communication delay. The bifurcation results with regard to leakage delay are firstly gained. Then, communication delay is viewed as a bifurcation parameter to detect the critical values of bifurcations for the addressed FOCGNN, and the communication delay induced-bifurcation conditions are procured. We further discover that fractional orders can enlarge (reduce) stability regions of the addressed FOCGNN. Furthermore, we discover that, for the same system parameters, the convergence time to the equilibrium point of FONN is shorter (longer) than that of integer-order NNs. In this paper, the present methodology to handle the characteristic equation with triple transcendental terms in delayed FOCGNNs is concise, neoteric and flexible in contrast with the prior mechanisms owing to skillfully keeping away from the intricate classified discussions. Eventually, the developed analytic results are nicely showcased by the simulation examples.

16.
Math Biosci Eng ; 21(4): 5658-5685, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38872552

RESUMO

In this paper, we explored a modified Leslie-Gower predator-prey model incorporating a fear effect and multiple delays. We analyzed the existence and local stability of each potential equilibrium. Furthermore, we investigated the presence of periodic solutions via Hopf bifurcation bifurcated from the positive equilibrium with respect to both delays. By utilizing the normal form theory and the center manifold theorem, we investigated the direction and stability of these periodic solutions. Our theoretical findings were validated through numerical simulations, which demonstrated that the fear delay could trigger a stability shift at the positive equilibrium. Additionally, we observed that an increase in fear intensity or the presence of substitute prey reinforces the stability of the positive equilibrium.

17.
Math Biosci Eng ; 21(4): 5687-5711, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38872554

RESUMO

In this paper, we have proposed and investigated an intraguild predator-prey system incorporating two delays and a harvesting mechanism based on the Michaelis-Menten principle, and it was assumed that the two species compete for a shared resource. Firstly, we examined the properties of the relevant characteristic equations to derive sufficient conditions for the asymptotical stability of equilibria in the delayed model and the existence of Hopf bifurcation. Using the normal form method and the central manifold theorem, we analyzed the stability and direction of periodic solutions arising from Hopf bifurcations. Our theoretical findings were subsequently validated through numerical simulations. Furthermore, we explored the impact of harvesting on the quantity of biological resources and examined the critical values associated with the two delays.


Assuntos
Simulação por Computador , Ecossistema , Pesqueiros , Cadeia Alimentar , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Animais , Algoritmos
18.
Math Biosci Eng ; 21(5): 5900-5946, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38872564

RESUMO

Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment encounters the issue of viral resistance as well. In this investigation, we introduce deterministic differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically, we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore, immune cells are capable of reducing the tumor load under the condition of sufficient immune strength. Numerical investigations reveal that the virus transmission rate and parameters related to the immune response significantly impact treatment outcomes. However, monotherapy alone is insufficient for eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can enhance the success of treatment.


Assuntos
Simulação por Computador , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Terapia Viral Oncolítica/métodos , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/fisiologia , Animais , Carga Tumoral , Proliferação de Células
19.
Bull Math Biol ; 86(6): 67, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700758

RESUMO

In biology, evolutionary game-theoretical models often arise in which players' strategies impact the state of the environment, driving feedback between strategy and the surroundings. In this case, cooperative interactions can be applied to studying ecological systems, animal or microorganism populations, and cells producing or actively extracting a growth resource from their environment. We consider the framework of eco-evolutionary game theory with replicator dynamics and growth-limiting public goods extracted by population members from some external source. It is known that the two sub-populations of cooperators and defectors can develop spatio-temporal patterns that enable long-term coexistence in the shared environment. To investigate this phenomenon and unveil the mechanisms that sustain cooperation, we analyze two eco-evolutionary models: a well-mixed environment and a heterogeneous model with spatial diffusion. In the latter, we integrate spatial diffusion into replicator dynamics. Our findings reveal rich strategy dynamics, including bistability and bifurcations, in the temporal system and spatial stability, as well as Turing instability, Turing-Hopf bifurcations, and chaos in the diffusion system. The results indicate that effective mechanisms to promote cooperation include increasing the player density, decreasing the relative timescale, controlling the density of initial cooperators, improving the diffusion rate of the public goods, lowering the diffusion rate of the cooperators, and enhancing the payoffs to the cooperators. We provide the conditions for the existence, stability, and occurrence of bifurcations in both systems. Our analysis can be applied to dynamic phenomena in fields as diverse as human decision-making, microorganism growth factors secretion, and group hunting.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Teoria dos Jogos , Conceitos Matemáticos , Modelos Biológicos , Animais , Humanos , Análise Espaço-Temporal , Simulação por Computador , Dinâmica Populacional/estatística & dados numéricos , Retroalimentação
20.
J Math Biol ; 88(5): 56, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573424

RESUMO

In this paper, an age-structured predator-prey system with Beddington-DeAngelis (B-D) type functional response, prey refuge and harvesting is investigated, where the predator fertility function f(a) and the maturation function ß ( a ) are assumed to be piecewise functions related to their maturation period τ . Firstly, we rewrite the original system as a non-densely defined abstract Cauchy problem and show the existence of solutions. In particular, we discuss the existence and uniqueness of a positive equilibrium of the system. Secondly, we consider the maturation period τ as a bifurcation parameter and show the existence of Hopf bifurcation at the positive equilibrium by applying the integrated semigroup theory and Hopf bifurcation theorem. Moreover, the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are studied by applying the center manifold theorem and normal form theory. Finally, some numerical simulations are given to illustrate of the theoretical results and a brief discussion is presented.


Assuntos
Fertilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA