Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 28: 272-283, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36819978

RESUMO

Recombinant adeno-associated virus (rAAV) is a clinically proven viral vector for delivery of therapeutic genes to treat rare diseases. Improving rAAV manufacturing productivity and vector quality is necessary to meet clinical and commercial demand. These goals will require an improved understanding of the cellular response to rAAV production, which is poorly defined. We interrogated the kinetic transcriptional response of HEK293 cells to rAAV production following transient plasmid transfection, under manufacturing-relevant conditions, using RNA-seq. Time-series analyses identified a robust cellular response to transfection and rAAV production, with 1,850 transcripts differentially expressed. Gene Ontology analysis determined upregulated pathways, including inflammatory and antiviral responses, with several interferon-stimulated cytokines and chemokines being upregulated at the protein level. Literature-based pathway prediction implicated multiple pathogen pattern sensors and signal transducers in up-regulation of inflammatory and antiviral responses in response to transfection and rAAV replication. Systematic analysis of the cellular transcriptional response to rAAV production indicates that host cells actively sense vector manufacture as an infectious insult. This dataset may therefore illuminate genes and pathways that influence rAAV production, thereby enabling the rational design of next-generation manufacturing platforms to support safe, effective, and affordable AAV-based gene therapies.

2.
Pathogens ; 11(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36558755

RESUMO

Despite the high prevalence of C. burnetii in dairy herds and continuous shedding via milk by chronically infected cows, bovine milk is not recognized as a relevant source of human Q fever. We hypothesized that the bovine mammary gland epithelial cell line PS represents a suitable in vitro model for the identification of C. burnetii-strain-specific virulence properties that may account for this discrepancy. Fifteen C. burnetii strains were selected to represent different host species and multiple loci variable number of tandem repeat analysis (MLVA) genotypes (I, II, III and IV). The replication efficiencies of all strains were similar, even though strains of the MLVA-genotype II replicated significantly better than genotype I strains, and bovine and ovine isolates replicated better than caprine ones. Bovine milk isolates replicated with similar efficiencies to isolates from other bovine organs. One sheep isolate (Cb30/14, MLVA type I, isolated from fetal membranes) induced a remarkable up-regulation of IL-1ß and TNF-α, whereas prototypic strains and bovine milk isolates tended to suppress pro-inflammatory responses. While infection with strain Nine Mile I rendered the cells partially refractory to re-stimulation with E. coli lipopolysaccharide, Cb30/14 exerted a selective suppressive effect which was restricted to IL-6 and TNF-α and spared IL-1ß. PS cells support the replication of different strains of C. burnetii and respond in a strain-specific manner, but isolates from bovine milk did not display a common pattern, which distinguishes them from strains identified as a public health concern.

3.
Front Immunol ; 13: 890549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720341

RESUMO

Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.


Assuntos
Proteínas Viroporinas , Vírus , Permeabilidade da Membrana Celular , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Vírus/metabolismo
4.
Gut Pathog ; 13(1): 42, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183045

RESUMO

BACKGROUND: Campylobacter jejuni (C. jejuni) infections are of increasing importance worldwide. As a typical mucosal pathogen, the interaction of C. jejuni with mucins is a prominent step in the colonisation of mucosal surfaces. Despite recent advances in understanding the interaction between bacterial pathogens and host mucins, the mechanisms of mucin glycosylation during intestinal C. jejuni infection remain largely unclear. This prompted us to identify relevant regulatory networks that are concerted by miRNAs and could play a role in the mucin modification and interaction. RESULTS: We firstly used a human intestinal in vitro model, in which we observed altered transcription of MUC2 and TFF3 upon C. jejuni NCTC 11168 infection. Using a combined approach consisting of in silico analysis together with in vitro expression analysis, we identified the conserved miRNAs miR-125a-5p and miR-615-3p associated with MUC2 and TFF3. Further pathway analyses showed that both miRNAs appear to regulate glycosyltransferases, which are related to the KEGG pathway 'Mucin type O-glycan biosynthesis'. To validate the proposed interactions, we applied an in vivo approach utilising a well-established secondary abiotic IL-10-/- mouse model for infection with C. jejuni 81-176. In colonic tissue samples, we confirmed infection-dependent aberrant transcription of MUC2 and TFF3. Moreover, two predicted glycosyltransferases, the sialyltransferases ST3GAL1 and ST3GAL2, exhibited inversely correlated transcriptional levels compared to the expression of the identified miRNAs miR-125a-5p and miR-615-3p, respectively. In this study, we mainly focused on the interaction between miR-615-3p and ST3GAL2 and were able to demonstrate their molecular interaction using luciferase reporter assays and RNAi. Detection of ST3GAL2 in murine colonic tissue by immunofluorescence demonstrated reduced intensity after C. jejuni 81-176 infection and was thus consistent with the observations made above. CONCLUSIONS: We report here for the first time the regulation of glycosyltransferases by miRNAs during murine infection with C. jejuni 81-176. Our data suggest that mucin type O-glycan biosynthesis is concerted by the interplay of miRNAs and glycosyltransferases, which could determine the shape of intestinal glycosylated proteins during infection.

5.
Acta Trop ; 220: 105966, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34023305

RESUMO

Toxoplasma gondii, which manipulates many signaling pathways to achieve persistence in host cells, is intimately linked to immune and inflammation responses. However, there is still lack of information about the impact of T. gondii on cellular and immune responses. This study was designed to seek the impact of T. gondii infection causing life-long inflammation in brain, on cancer mechanism. To identify molecular effects of the T. gondii and understand the association between the functional perturbations occurring during infection and cancer development, the transcriptomic datasets obtained mice infected with T. gondii were downloaded from GEO. The differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed using IPA platform, then all results were evaluated with comparison analyses. Subsequently, a T. gondii infection model with human neuroepithelioma cell culture was performed in order to validate top DEGs participated in common networks/pathways in cancer mechanism. Transcriptomic analyses of infected mice and in vitro cell culture model revealed a strong immune response and inflammation occurred by parasite-induced damage and parasite-associated immunopathology in host cell and tissue. T. gondii infection could modulate certain signaling pathways of host, which were also common to those perturbed in carcinogenesis. Interestingly, the network analysis of the data sets predicted an activation in development of solid cancer vice versa inhibition in hematological cancer during T. gondii infection. Parasite might also control the tumor growth due to its potent immune-stimulant effects. As result, T. gondii infection generating a continual inflammation in tissues might potentially contribute to cancer development by regulating critical host signaling pathways or reveal an anti-tumoral activity.


Assuntos
Neoplasias/imunologia , Neoplasias/parasitologia , Toxoplasma/fisiologia , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
Cells ; 9(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847031

RESUMO

Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.


Assuntos
Aminopeptidases/genética , Betacoronavirus/imunologia , Infecções por Coronavirus/genética , Imunização/métodos , Leucócitos Mononucleares/virologia , Macrófagos/virologia , Pneumonia Viral/genética , Isoformas de Proteínas/genética , Apresentação de Antígeno/genética , Doadores de Sangue , COVID-19 , Linhagem Celular Tumoral , Infecções por Coronavirus/virologia , Expressão Gênica/imunologia , Genótipo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Pandemias , Pneumonia Viral/virologia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2 , Transcrição Gênica/imunologia
7.
Metab Eng ; 61: 360-368, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710928

RESUMO

Achieving the predictable expression of heterologous genes in a production host has proven difficult. Each heterologous gene expressed in the same host seems to elicit a different host response governed by unknown mechanisms. Historically, most studies have approached this challenge by manipulating the properties of the heterologous gene through methods like codon optimization. Here we approach this challenge from the host side. We express a set of 45 heterologous genes in the same Escherichia coli strain, using the same expression system and culture conditions. We collect a comprehensive RNAseq set to characterize the host's transcriptional response. Independent Component Analysis of the RNAseq data set reveals independently modulated gene sets (iModulons) that characterize the host response to heterologous gene expression. We relate 55% of variation of the host response to: Fear vs Greed (16.5%), Metal Homeostasis (19.0%), Respiration (6.0%), Protein folding (4.5%), and Amino acid and nucleotide biosynthesis (9.0%). If these responses can be controlled, then the success rate with predicting heterologous gene expression should increase.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA-Seq , Transcriptoma , Escherichia coli/genética , Escherichia coli/metabolismo
8.
Gut Pathog ; 12: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064001

RESUMO

BACKGROUND: Campylobacter jejuni (C. jejuni) has been assigned as an important food-borne pathogen for human health but many pathogenicity factors of C. jejuni and human host cell responses related to the infection have not yet been adequately clarified. This study aimed to determine further C. jejuni pathogenicity factors and virulence genes based on a random mutagenesis approach. A transposon mutant library of C. jejuni NCTC 11168 was constructed and the ability of individual mutants to adhere to and invade human intestinal epithelial cells was evaluated compared to the wild type. We identified two mutants of C. jejuni possessing altered phenotypes with transposon insertions in the genes Cj1492c and Cj1507c. Cj1492c is annotated as a two-component sensor and Cj1507c is described as a regulatory protein. However, functions of both mutated genes are not clarified so far. RESULTS: In comparison to the wild type, Cj::1492c and Cj::1507c showed around 70-80% relative motility and Cj::1492c had around 3-times enhanced adhesion and invasion rates whereas Cj::1507c had significantly impaired adhesive and invasive capability. Moreover, Cj::1492c had a longer lag phase and slower growth rate while Cj::1507c showed similar growth compared to the wild type. Between 5 and 24 h post infection, more than 60% of the intracellular wild type C. jejuni were eliminated in HT-29/B6 cells, however, significantly fewer mutants were able to survive intracellularly. Nevertheless, no difference in host cell viability and induction of the pro-inflammatory chemokine IL-8 were determined between both mutants and the wild type. CONCLUSION: We conclude that genes regulated by Cj1507c have an impact on efficient adhesion, invasion and intracellular survival of C. jejuni in HT-29/B6 cells. Furthermore, potential signal sensing by Cj1492c seems to lead to limiting attachment and hence internalisation of C. jejuni. However, as the intracellular survival capacities are reduced, we suggest that signal sensing by Cj1492c impacts several processes related to pathogenicity of C. jejuni.

9.
Virulence ; 10(1): 68-81, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874074

RESUMO

Acinetobacter baumannii is a Gram-negative pathogen that causes a multitude of nosocomial infections. The Acinetobacter trimeric autotransporter adhesin (Ata) belongs to the superfamily of trimeric autotransporter adhesins which are important virulence factors in many Gram-negative species. Phylogenetic profiling revealed that ata is present in 78% of all sequenced A. baumannii isolates but only in 2% of the closely related species A. calcoaceticus and A. pittii. Employing a markerless ata deletion mutant of A. baumannii ATCC 19606 we show that adhesion to and invasion into human endothelial and epithelial cells depend on Ata. Infection of primary human umbilical cord vein endothelial cells (HUVECs) with A. baumannii led to the secretion of interleukin (IL)-6 and IL-8 in a time- and Ata-dependent manner. Furthermore, infection of HUVECs by WT A. baumannii was associated with higher rates of apoptosis via activation of caspases-3 and caspase-7, but not necrosis, in comparison to ∆ata. Ata deletion mutants were furthermore attenuated in their ability to kill larvae of Galleria mellonella and to survive in larvae when injected at sublethal doses. This indicates that Ata is an important multifunctional virulence factor in A. baumannii that mediates adhesion and invasion, induces apoptosis and contributes to pathogenicity in vivo.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Adesinas Bacterianas/genética , Sistemas de Secreção Tipo V/genética , Fatores de Virulência/genética , Infecções por Acinetobacter/microbiologia , Animais , Apoptose , Aderência Bacteriana/genética , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Larva/microbiologia , Mariposas/microbiologia , Mutação , Filogenia , Cordão Umbilical/citologia , Virulência
10.
Cytokine ; 112: 63-74, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30072088

RESUMO

Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.


Assuntos
Infecções por Rickettsia/metabolismo , Rickettsia/patogenicidade , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-29379776

RESUMO

Most human Q fever infections originate from small ruminants. By contrast, highly prevalent shedding of Coxiella (C.) burnetii by bovine milk rarely results in human disease. We hypothesized that primary bovine and human monocyte-derived macrophages (MDM) represent a suitable in vitro model for the identification of strain-specific virulence properties at the cellular level. Twelve different C. burnetii strains were selected to represent different host species and multiple loci variable number of tandem repeat analysis (MLVA) genotypes. Infection efficiency and replication of C. burnetii were monitored by cell culture re-titration and qPCR. Expression of immunoregulatory factors after MDM infection was measured by qRT-PCR and flow cytometry. Invasion, replication and MDM response differed between C. burnetii strains but not between MDMs of the two hosts. Strains isolated from ruminants were less well internalized than isolates from humans and rodents. Internalization of MLVA group I strains was lower compared to other genogroups. Replication efficacy of C. burnetii in MDM ranged from low (MLVA group III) to high (MLVA group IV). Infected human and bovine MDM responded with a principal up-regulation of pro-inflammatory cytokines such as IL-1ß, IL-12, and TNF-α. However, MLVA group IV strains induced a pronounced host response whereas infection with group I strains resulted in a milder response. C. burnetii infection marginally affected polarization of MDM. Only one C. burnetii strain of MLVA group IV caused a substantial up-regulation of activation markers (CD40, CD80) on the surface of bovine and human MDM. The study showed that replication of C. burnetii in MDM and the subsequent host cell response is genotype-specific rather than being determined by the host species pointing to a clear distinction in C. burnetii virulence between the genetic groups.


Assuntos
Coxiella burnetii/fisiologia , Genótipo , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Febre Q/imunologia , Febre Q/microbiologia , Animais , Biomarcadores , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo
12.
Virology ; 493: 189-201, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27058765

RESUMO

Dobrava-Belgrade virus (DOBV) is a pathogen causing hemorrhagic fever with renal syndrome in Europe. Virulence and case fatality rate are associated with virus genotype; however the reasons for these differences are not well understood. In this work we present virus-specific effects on the gene expression profiles of human lung epithelial cells (A549) infected with different genotypes of DOBV (Dobrava, Kurkino, and Sochi), as well as the low-virulent Tula virus (TULV). The data was collected by whole-genome gene expression microarrays and confirmed by quantitative real-time PCR. Despite their close genetic relationship, the expression profiles induced by infection with different hantaviruses are significantly varying. Major differences were observed in regulation of immune response genes, which were especially induced by highly virulent DOBV genotypes Dobrava and Sochi in contrast to less virulent DOBV-Kurkino and TULV. This work gives first insights into the differences of virus - host interactions of DOBV on genotype level.


Assuntos
Células Epiteliais Alveolares/virologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Orthohantavírus/patogenicidade , Células A549 , Linhagem Celular Tumoral , Orthohantavírus/genética , Humanos , Interferons/fisiologia , Pulmão/citologia , Pulmão/virologia , Reação em Cadeia da Polimerase em Tempo Real , Virulência/genética , Cultura de Vírus
13.
Virus Res ; 212: 85-102, 2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26454190

RESUMO

HCV is an ideal model to study how the infected cell is altered to allow the establishment of a chronic infection. After infection, the transcriptome of the cell changes in response to the virus or to the antiviral pathways induced by infection. The cell has evolved to sense HCV soon after infection and to activate antiviral pathways. In turn, HCV has evolved to block the antiviral pathways induced by the cell and, at the same time, to use some for its own benefit. In this review, we summarize the proviral and antiviral factors induced in HCV infected cells. These factors can be proteins and microRNAs, but also long noncoding RNAs (lncRNAs) that are induced by infection. Interestingly, several of the lncRNAs upregulated after HCV infection have oncogenic functions, suggesting that upregulation of lncRNAs could explain, at least in part, the increased rate of liver tumors observed in HCV-infected patients. Other lncRNAs induced by HCV infection may regulate the expression of coding genes required for replication or control genes involved in the cellular antiviral response. Given the evolutionary pressure imposed by viral infections and that lncRNAs are specially targeted by evolution, we believe that the study of proviral and antiviral lncRNAs may lead to unexpected discoveries that may have a strong impact on basic science and translational research.


Assuntos
Hepacivirus/fisiologia , Hepatite C/genética , Interferons/imunologia , RNA não Traduzido/genética , Animais , Hepacivirus/genética , Hepatite C/imunologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferons/genética , RNA não Traduzido/imunologia , Replicação Viral
14.
Proteomics ; 15(12): 2113-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900405

RESUMO

Viruses induce changes in the host to facilitate replication and evade the immune response. These changes are reflected by the host's proteome, including differences in protein abundance. Focusing on up and down regulated proteins after a virus infects the cell will lead to a characterization of the host response to infection, and may give insight into how viruses modulate proteins to evade host defense responses. We previously used SILAC to examine host proteomic changes in protein abundance in HEK293 cells infected with reovirus type 1, strain Lang (T1L). For the present study, we extended this analysis by determining cell protein alterations induced by two different reovirus subtypes, a less pathogenic type 3 Dearing (T3D(F)) isolate, and a more pathogenic isolate named T3D(C) that is presently in clinical trials as an anti-cancer oncolytic agent. This comparison of host proteome regulation showed that T3D(C) had a more marked effect on DNA replication proteins, recombination and repair, as well as immunological, apoptotic, and survival cell functions. We also identified several proteins not previously identified in any virus infection; branched chain amino-acid transaminase 2 (BCAT), paternally expressed 10 (PEG10), target of myb1 (TOM1), histone cluster 2 H4b (HIST2H4B) and tubulin beta 4B (TUBB4B).


Assuntos
Proteoma/análise , Proteômica/métodos , Infecções por Reoviridae/metabolismo , Reoviridae/classificação , Reoviridae/fisiologia , Proteínas Virais/metabolismo , Western Blotting , Cromatografia Líquida/métodos , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Infecções por Reoviridae/virologia , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
Virus Res ; 179: 53-63, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24291252

RESUMO

The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Pulmão/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/virologia , Pulmão/química , Pulmão/virologia , Dados de Sequência Molecular , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA