Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 458: 140267, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968717

RESUMO

Recently, with changes in dietary patterns, there has been increased interest in the concept of food and medicine homology, which can help prevent disease development. This has led to a growing focus on the development of functional health foods derived from edible herbal sources. Polysaccharides, found in many edible herbal sources, are gaining popularity as natural ingredients in the production of functional food products. The gut microbiota can effectively utilize most edible herbal polysaccharides (EHPs) and produce beneficial metabolites; therefore, the prebiotic potential of EHPs is gradually being recognized. In this review, we comprehensively discuss the structural features and characterization of EHPs to promote gut microbiota regulation as well as the structure-activity relationship between EHPs and gut microbiota. As prebiotics, intestinal microbiota can use EHPs to indirectly produce metabolites such as short-chain fatty acids to promote overall health; on the other hand, different EHP structures possess some degree of selectivity on gut microbiota regulation. Moreover, we evaluate the functionality and mechanism underlying EHPs in terms of anticancer activity, antimetabolic diseases, anti-inflammatory activity, and anti-neuropsychiatric diseases.

2.
Appl Microbiol Biotechnol ; 108(1): 362, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842702

RESUMO

Intestinal microbiome contains several times of functional genes compared to the host and mediates the generation of multiple metabolic products, and therefore it is called "second genome" for host. Crustaceans rank second among the largest subphylum of aquaculture animals that are considered potentially satisfy global substantial food and nutrition security, among which the Pacific white shrimp (Litopenaeus vannamei) ranks the first in the production. Currently, increasing evidences show that outbreaks of some most devastating diseases in shrimp, including white feces syndrome (WFS) and acute hepatopancreatic necrosis disease (AHPND), are related to intestinal microbiota dysbiosis. Importantly, the intestine microbial composition can be altered by environmental stress, diet, and age. In this review, we overview the progress of intestinal microbiota dysbiosis and WFS or ANPHD in shrimp, and how the microbial composition is altered by external factors. Hence, developing suitable microbial micro-ecological prevention and control strategy to maintain intestinal balance may be a feasible solution to reduce the risk of disease outbreaks. Moreover, we highlight that defining the "healthy intestine microbiota" and evaluating the causality of intestinal microbiota dysbiosis and diseases following the logic of "Microecological Koch's postulates" should be the key goal in future shrimp intestinal field, which help to guide disease diagnosis and prevent disease outbreaks in shrimp farming. KEY POINTS: • Intestinal microbiota dysbiosis is relevant to multiple shrimp diseases. • Microecological Koch's postulates help to evaluate the causality of shrimp diseases.


Assuntos
Aquicultura , Disbiose , Microbioma Gastrointestinal , Penaeidae , Animais , Penaeidae/microbiologia , Disbiose/microbiologia
3.
Microbiol Res ; 284: 127725, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663233

RESUMO

Increasing studies have focused on the relationship between Desulfovibrio bacteria (DSV) and host health in recent years. However, little is known about the mechanisms by which DSV affects host health and the strategies to accurately regulate DSV numbers. This review mainly presents the relationship between DSV and host health, potential modulatory strategies, and the potential mechanisms affecting host health. Evidence suggests that DSV can both promote host health and induce the occurrence and development of disease, and these effects are closely related to its metabolites (e.g., H2S and short-chain fatty acids) and biofilm. DSV abundance in the intestine is influenced by probiotics, prebiotics, diet, lifestyle, and drugs.


Assuntos
Biofilmes , Desulfovibrio , Microbioma Gastrointestinal , Probióticos , Desulfovibrio/metabolismo , Desulfovibrio/fisiologia , Humanos , Microbioma Gastrointestinal/fisiologia , Biofilmes/crescimento & desenvolvimento , Intestinos/microbiologia , Prebióticos , Animais , Ácidos Graxos Voláteis/metabolismo , Sulfeto de Hidrogênio/metabolismo , Dieta
4.
J Agric Food Chem ; 72(14): 7596-7606, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557058

RESUMO

The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Lactoferrina , Dieta , Prebióticos
5.
Sci Total Environ ; 925: 171536, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38461992

RESUMO

Environmental stress can disrupt the intricate interactions between the host and intestine microbiota, thereby impacting the host health. In this study, we aimed to elucidate the dynamic changes in the bacterial community within shrimp intestines under nitrite nitrogen (nitrite-N) stress and investigate potential host-related factors influencing these changes. Our results revealed a significant reduction in community diversity within the intestine exposed to nitrite-N compared to control conditions. Furthermore, distinct differences in community structures were observed between these two groups at 72 h and 120 h post-stress induction. Nitrite-N stress also altered the abundances of some bacterial species in the intestine dramatically. It is noteworthy that, in comparison to the 72 h, intestine bacterial community structure of stressed shrimp exhibited a significantly higher degree of dispersion after 120 h of nitrite-N stress when compared to control shrimp, and the relative abundance of numerous bacterial species experienced a substantial decrease or even reached 0 %. Moreover, it led to a reduction in bacterial community interactions and decreased competitiveness within the intestine microbiota. Notably, the influence of bacterial community assemblies in the shrimp intestine shifted from a stochastic process to a deterministic one after 24 h and 72 h of nitrite-N stress, returning to a stochastic process at 120 h. We further observed a close association between this phenomenon and host's response to nitrite-N stress. Expression levels of differentially expressed genes in the intestinal tissue significantly impact the intestine bacterial diversity and abundance of species. In particular, the significant decline in bacterial diversity and abundances of quite a few species in intestine was attributed to the up-regulation of peritrophin-48-like. Overall, nitrite-N stress indeed disrupted the intestine microbiota and changed the host-microbiota interactions of shrimp. This study offered novel insights into environment-host-microbiota interactions and also provided practical guidance for promoting healthy shrimp cultivation practices.


Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Nitritos/toxicidade , Microbioma Gastrointestinal/fisiologia , Bactérias/genética , Intestinos/microbiologia , Crustáceos , Penaeidae/microbiologia
6.
Parasitology ; 151(3): 251-259, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372138

RESUMO

Circadian rhythms are timekeeping mechanisms responsible for an array of biological processes. Disruption of such cycles can detrimentally affect animal health. Circadian rhythms are critical in the co-evolution of host­parasite systems, as synchronization of parasite rhythms to the host can influence infection dynamics and transmission potential. This study examines the circadian rhythms in behaviour and activity of a model fish species (Poecilia reticulata) in isolation and in shoals, both when uninfected and infected with an ectoparasite (Gyrodactylus turnbulli). Additionally, the rhythmical variance of parasite activity under different light conditions as well as rhythmical variance in parasite transmissibility was explored. Overall, infection alters the circadian rhythm of fish, causing nocturnal restlessness. Increased activity of gyrodactylids on the host's skin at night could potentially contribute to this elevated host activity. Whilst migration of gyrodactylids across the host's skin may have caused irritation to the host resulting in nocturnal restlessness, the disruption in guppy activity rhythm caused by the expression of host innate immunity cannot be excluded. We discuss the wider repercussions such behavioural responses to infection have for host health, the implications for animal behaviour studies of diurnal species as well as the application of chronotherapeutic approaches to aquaculture.


Assuntos
Parasitos , Poecilia , Trematódeos , Animais , Ciclos de Atividade , Agitação Psicomotora , Comportamento Animal , Poecilia/parasitologia , Ritmo Circadiano
7.
Food Res Int ; 172: 113133, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689844

RESUMO

Dietary fiber exerts a wide range of biological benefits on host health, which not only provides a powerful source of nutrition for gut microbiota but also supplies key microbial metabolites that directly affect host health. This review mainly focuses on the decomposition and metabolism of dietary fiber and the essential genera Bacteroides and Bifidobacterium in dietary fiber fermentation. Dietary fiber plays an essential role in host health by impacting outcomes related to obesity, enteritis, immune health, cancer and neurodegenerative diseases. Additionally, the gut microbiota-independent pathway of dietary fiber affecting host health is also discussed. Personalized dietary fiber intake combined with microbiome, genetics, epigenetics, lifestyle and other factors has been highlighted for development in the future. A higher level of evidence is needed to demonstrate which microbial phenotype benefits from which kind of dietary fiber. In-depth insights into the correlation between gut microbiota and dietary fiber provide strong theoretical support for the precise application of dietary fiber, which elucidates a dietary causal relationship with host health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dieta , Estado Nutricional , Fibras na Dieta
8.
Nutr Rev ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528052

RESUMO

CONTEXT: It is well known that the microbiome undergoes cyclical diurnal rhythms. It has thus been hypothesized that meal timing may affect gut microbial composition, function, and host health. OBJECTIVE: This review aims to examine the effects of time-restricted eating (TRE) and Ramadan fasting (RF) on the composition of the gut microbiota in animal and human studies. The associations between composition of microbiota and host metabolic parameters are also examined. DATA SOURCES: A search was performed on the PubMed, Cochrane, Scopus, and Web of Science databases up to December 31, 2022. The search strategy was performed using the Medical Subject Heading (MeSH) terms "intermittent fasting" and "gastrointestinal microbiome" and the key words "Ramadan fasting" and "microbes." DATA EXTRACTION: Seven human studies (4 TRE and 3 RF) and 9 animal studies (7 TRE, 2 RF-like) were retrieved. DATA ANALYSIS: TRE and RF in human studies lead to an increase in gut microbial community alpha-diversity. In animal studies (both TRE and RF-like), fasting is not associated with improved alpha-diversity, but enhancement of microbial fluctuation is observed, compared with high-fat diet ad libitum groups. Within Firmicutes and Bacteroidetes phyla, no specific direction of changes resulting from fasting are observed in both animals and human. After TRE or RF, a greater abundance of the Faecalibacterium genus is observed in human studies; changes in Lactobacillus abundance are found in animal studies; and increases in Akkermansia are seen both in humans and in animals fed a feed-pellet diet. Only 2 human studies show a beneficial correlation between microbiota changes and host metabolic (HDL cholesterol) or anthropometric parameters (body mass index). CONCLUSIONS: These findings support the importance of both regimens in improving the gut microbiota composition. However, based on results of animal studies, it can be suggested that diet remains the essential factor in forming the microbiota's environment. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42021278918.

9.
Front Cell Infect Microbiol ; 13: 1211348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600938

RESUMO

Introduction: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected a substantial portion of the world's population, and novel consequences of COVID-19 on the human body are continuously being uncovered. The human microbiome plays an essential role in host health and well-being, and multiple studies targeting specific populations have reported altered microbiomes in patients infected with SARS-CoV-2. Given the global scale and massive incidence of COVID on the global population, determining whether the effects of COVID-19 on the human microbiome are consistent and generalizable across populations is essential. Methods: We performed a synthesis of human microbiome responses to COVID-19. We collected 16S rRNA gene amplicon sequence data from 11 studies sampling the oral and nasopharyngeal or gut microbiome of COVID-19-infected and uninfected subjects. Our synthesis included 1,159 respiratory (oral and nasopharyngeal) microbiome samples and 267 gut microbiome samples from patients in 11 cities across four countries. Results: Our reanalyses revealed communitywide alterations in the respiratory and gut microbiomes across human populations. We found significant overall reductions in the gut microbial diversity of COVID-19-infected patients, but not in the respiratory microbiome. Furthermore, we found more consistent community shifts in the gut microbiomes of infected patients than in the respiratory microbiomes, although the microbiomes in both sites exhibited higher host-to-host variation in infected patients. In respiratory microbiomes, COVID-19 infection resulted in an increase in the relative abundance of potentially pathogenic bacteria, including Mycoplasma. Discussion: Our findings shed light on the impact of COVID-19 on the human-associated microbiome across populations, and highlight the need for further research into the relationship between long-term effects of COVID-19 and altered microbiota.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , SARS-CoV-2 , RNA Ribossômico 16S/genética
10.
Front Nutr ; 10: 1213010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485384

RESUMO

The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.

12.
Antibiotics (Basel) ; 12(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37370356

RESUMO

The emergence of drug-resistant genes and concerns about food safety caused by the overuse of antibiotics are becoming increasingly prominent. There is an urgent need for effective alternatives to antibiotics in the fields of livestock production and human medicine. Antimicrobial peptides can effectively replace antibiotics to kill pathogens and enhance the immune functions of the host, and pathogens cannot easily produce genes that are resistant to them. The ability of antimicrobial peptides (AMPs) to kill pathogens is associated with their structure and physicochemical properties, such as their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs regulate the activity of immunological cells and stimulate the secretion of inflammatory cytokines via the activation of the NF-κB and MAPK signaling pathways. However, there are still some limitations to the application of AMPs in the fields of livestock production and human medicine, including a restricted source base, high costs of purification and expression, and the instability of the intestines of animals and humans. This review summarizes the information on AMPs as effective antibiotic substitutes to improve the immunological functions of the host through suppressing pathogens and regulating inflammatory responses. Potential challenges for the commercial application of AMPs in animal husbandry and human medicine are discussed.

14.
Genomics Proteomics Bioinformatics ; 21(1): 150-163, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37088195

RESUMO

The gut microbiome is closely related to host nutrition and health. However, the relationships between gut microorganisms and host lifestyle are not well characterized. In the absence of confounding geographic variation, we defined clear patterns of variation in the gut microbiomes of Asian elephants (AEs) in the Wild Elephant Valley, Xishuangbanna, China, along a lifestyle gradient (completely captive, semicaptive, semiwild, and completely wild). A phylogenetic analysis using the 16S rRNA gene sequences highlighted that the microbial diversity decreased as the degree of captivity increased. Furthermore, the results showed that the bacterial taxon WCHB1-41_c was substantially affected by lifestyle variations. qRT-PCR analysis revealed a paucity of genes related to butyrate production in the gut microbiome of AEs with a completely wild lifestyle, which may be due to the increased unfavorable environmental factors. Overall, these results demonstrate the distinct gut microbiome characteristics among AEs with a gradient of lifestyles and provide a basis for designing strategies to improve the well-being or conservation of this important animal species.


Assuntos
Elefantes , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Elefantes/genética , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética
15.
Crit Rev Food Sci Nutr ; 63(20): 4217-4234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35389274

RESUMO

Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.


Assuntos
Brassicaceae , Glucosinolatos , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Brassicaceae/química , Brassicaceae/metabolismo , Isotiocianatos/metabolismo , Anti-Inflamatórios/metabolismo
16.
18.
Crit Rev Food Sci Nutr ; : 1-23, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315042

RESUMO

Synbiotic is defined as the dietary mixture that comprises both probiotic microorganisms and prebiotic substrates. The concept has been steadily gaining attention owing to the rising recognition of probiotic, prebiotics, and gut health. Among prebiotic substances, oligosaccharides demonstrated considerable health beneficial effects in varieties of food products and their combination with probiotics have been subjected to full range of evaluations. This review delineated the landscape of studies using microbial cultures, cell lines, animal model, and human subjects to explore the functional properties and host impacts of these combinations. Overall, the results suggested that these combinations possess respective metabolic properties that could facilitate beneficial activities therefore could be employed as dietary interventions for human health improvement and therapeutic purposes. However, uncertainties, such as applicational practicalities, underutilized analytical tools, contradictory results in studies, unclear mechanisms, and legislation hurdles, still challenges the broad utilization of these combinations. Future studies to address these issues may not only advance current knowledge on probiotic-prebiotic-host interrelationship but also promote respective applications in food and nutrition.

19.
Gut Microbes ; 14(1): 2125734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127825

RESUMO

Bacteria have been known to reside in the human gut for roughly two centuries, but their modulatory effects on host health status are still not fully characterized. The gut microbiota is known to interact with dietary components and nutrients, producing functional metabolites that may alter host metabolic processes. The majority of thoroughly researched and understood gut microbial metabolites fall into two categories: short-chain fatty acids (SCFAs) and bacterial derivatives of dietary tryptophan. Despite the heavy emphasis on these metabolites, other metabolites stemming from microbial origin have significant impacts on host health and disease states. In this narrative review, we summarize eight recent studies elucidating novel bacterial metabolites, detailing the process by which these metabolites are identified, their actions within specific categories of human health, and how diet may impact production of these metabolites. With similar future mechanistic research, a more complete picture of bacterial impact on host metabolism may be constructed.


Assuntos
Microbioma Gastrointestinal , Bactérias/genética , Bactérias/metabolismo , Dieta , Ácidos Graxos Voláteis/metabolismo , Humanos , Triptofano/metabolismo
20.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980144

RESUMO

The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA