Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(3): 232-247, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626275

RESUMO

VemR is a response regulator of the two-component signalling systems (TCSs). It consists solely of a receiver domain. Previous studies have shown that VemR plays an important role in influencing the production of exopolysaccharides and exoenzymes, cell motility, and virulence of Xanthomonas campestris pv. campestris (Xcc). However, whether VemR is involved in the essential pathogenicity determinant type III secretion system (T3SS) is unclear. In this work, we found by transcriptome analysis that VemR modulates about 10% of Xcc genes, which are involved in various cellular processes including the T3SS. Further experiments revealed that VemR physically interacts with numerous proteins, including the TCS sensor kinases HpaS and RavA, and the TCS response regulator HrpG, which directly activates the transcription of HrpX, a key regulator controlling T3SS expression. It has been demonstrated previously that HpaS composes a TCS with HrpG or VemR to control the expression of T3SS or swimming motility, while RavA and VemR form a TCS to control the expression of flagellar genes. Mutation analysis and in vitro transcription assay revealed that phosphorylation might be essential for the function of VemR and phosphorylated VemR could significantly enhance the activation of hrpX transcription by HrpG. We infer that the binding of VemR to HrpG can modulate the activity of HrpG to the hrpX promoter, thereby enhancing hrpX transcription. Although further studies are required to validate this inference and explore the detailed functional mechanism of VemR, our findings provide some insights into the complex regulatory cascade of the HpaS/RavA-VemR/HrpG-HrpX signal transduction system in the control of T3SS.


Assuntos
Xanthomonas campestris , Xanthomonas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Regiões Promotoras Genéticas , Fosforilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Front Microbiol ; 13: 1064577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532489

RESUMO

Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, severely damages watermelon, melon, and other cucurbit crops worldwide. Although many virulence determinants have been identified in A. citrulli, including swimming motility, twitching motility, biofilm formation, and the type III secretion system (T3SS), research on their regulation is lacking. To study virulence regulation mechanisms, we found a putative histidine kinase BarA Ac that may be related to the T3SS regulator HrpG in A. citrulli. We deleted and characterized barAAc (Aave_2063) in A. citrulli Aac5 strain. Compared to the wild-type Aac5, virulence and early proliferation of barAAc mutant in host watermelon cotyledons were significantly increased, and induction of hypersensitive response in non-host tobacco was accelerated, while biofilm formation and swimming motility were significantly reduced. In addition, the transcriptomic analysis revealed that the expression of many T3SS-related genes was upregulated in the ΔbarAAc deletion mutant when cultured in KB medium. Meanwhile, the ΔbarAAc deletion mutant showed increased accumulation of the T3SS regulator HrpG in KB medium, which may account for the increased deployment of T3SS. This suggests that the putative histidine kinase BarA Ac is able to repress the T3SS expression by inhibiting HrpG in the KB medium, which appears to be important for rational energy allocation. In summary, our research provides further understanding of the regulatory network of A. citrulli virulence.

3.
Front Microbiol ; 13: 928551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756024

RESUMO

Two-component systems (TCSs) (cognate sensor histidine kinase/response regulator pair, HK/RR) play a crucial role in bacterial adaptation, survival, and productive colonization. An atypical orphan single-domain RR VemR was characterized by the non-vascular pathogen Xanthomonas oryzae pv. oryzicola (Xoc) is known to cause bacterial leaf streak (BLS) disease in rice. Xoc growth and pathogenicity in rice, motility, biosynthesis of extracellular polysaccharide (EPS), and the ability to trigger HR in non-host tobacco were severely compromised in the deletion mutant strain RΔvemR as compared to the wild-type strain RS105. Site-directed mutagenesis and phosphotransfer experiments revealed that the conserved aspartate (D56) residue within the stand-alone phosphoacceptor receiver (REC) domain is essential for phosphorelay and the regulatory activity of Xoc VemR. Yeast two-hybrid (Y2H) and co-immunoprecipitation (co-IP) data identified CheA as the HK co-opting the RR VemR for phosphorylation. Affinity proteomics identified several downstream VemR-interacting proteins, such as 2-oxoglutarate dehydrogenase (OGDH), DNA-binding RR SirA, flagellar basal body P-ring formation protein FlgA, Type 4a pilus retraction ATPase PilT, stress-inducible sensor HK BaeS, septum site-determining protein MinD, cytoskeletal protein CcmA, and Type III and VI secretion system proteins HrpG and Hcp, respectively. Y2H and deletion mutant analyses corroborated that VemR interacted with OGDH, SirA, FlgA, and HrpG; thus, implicating multi-layered control of diverse cellular processes including carbon metabolism, motility, and pathogenicity in the rice. Physical interaction between VemR and HrpG suggested cross-talk interaction between CheA/VemR- and HpaS/HrpG-mediated signal transduction events orchestrating the hrp gene expression.

4.
Mol Plant Pathol ; 23(2): 159-174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837293

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.


Assuntos
Brassica , Xanthomonas campestris , Xanthomonas , Adaptação Fisiológica/genética , Proteínas de Bactérias/metabolismo , Brassica/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/genética , Transcriptoma/genética , Virulência/genética , Xanthomonas/metabolismo , Xanthomonas campestris/genética
5.
Microorganisms ; 9(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467109

RESUMO

Bacteria of the genus Xanthomonas cause a wide variety of economically important diseases in most crops. The virulence of the majority of Xanthomonas spp. is dependent on secretion and translocation of effectors by the type 3 secretion system (T3SS) that is controlled by two master transcriptional regulators HrpG and HrpX. Since their discovery in the 1990s, the two regulators were the focal point of many studies aiming to decipher the regulatory network that controls pathogenicity in Xanthomonas bacteria. HrpG controls the expression of HrpX, which subsequently controls the expression of T3SS apparatus genes and effectors. The HrpG/HrpX regulon is activated in planta and subjected to tight metabolic and genetic regulation. In this review, we cover the advances made in understanding the regulatory networks that control and are controlled by the HrpG/HrpX regulon and their conservation between different Xanthomonas spp.

6.
Front Plant Sci ; 11: 972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719700

RESUMO

Bacterial blight, which is one of the most common soybean diseases, is responsible for considerable yield losses. In this study, a novel Xanthomonas vasicola strain was isolated from the leaves of soybean plants infected with bacterial blight under field conditions. Sequencing the X. vasicola genome revealed type-III effector-coding genes. Moreover, the hrpG deletion mutant was constructed. To identify the soybean genes responsive to HrpG, two chromosome segment substitution lines (CSSLs) carrying the wild soybean genome, but with opposite phenotypes following Xanthomonas inoculations, were used to analyze gene expression networks based on RNA sequencing at three time points after inoculations with wild-type Xanthomonas or the hrpG deletion mutant. To further identify the hub genes underlying soybean responses to HrpG, the genes located on the substituted chromosome segments were examined. Finally, a combined analysis with the QTLs for resistance to Xanthomonas identified 35 hub genes in the substituted chromosomal segments that may help regulate soybean responses to Xanthomonas and HrpG. Furthermore, two candidate genes in the CSSLs might play pivotal roles in response to Xanthomonas.

7.
Mol Plant Pathol ; 21(3): 388-400, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31916392

RESUMO

Gamma-proteobacteria Xanthomonas spp. cause at least 350 different plant diseases among important agricultural crops, which result in serious yield losses. Xanthomonas spp. rely mainly on the type III secretion system (T3SS) to infect their hosts and induce a hypersensitive response in nonhosts. HrpG, the master regulator of the T3SS, plays the dominant role in bacterial virulence. In this study, we used chromatin immunoprecipitation followed by sequencing (ChIP-seq) and tandem affinity purification (TAP) to systematically characterize the HrpG regulon and HrpG interacting proteins in vivo. We obtained 186 candidate HrpG downstream genes from the ChIP-seq analysis, which represented the genomic-wide regulon spectrum. A consensus HrpG-binding motif was obtained and three T3SS genes, hpa2, hrcU, and hrpE, were confirmed to be directly transcriptionally activated by HrpG in the inducing medium. A total of 273 putative HrpG interacting proteins were identified from the TAP data and the DNA-binding histone-like HU protein of Xanthomonas campestris pv. campestris (HUxcc ) was proved to be involved in bacterial virulence by increasing the complexity and intelligence of the bacterial signalling pathways in the T3SS.


Assuntos
Proteínas de Bactérias/metabolismo , Regulon , Fatores de Transcrição/metabolismo , Xanthomonas campestris/metabolismo , Proteínas de Bactérias/genética , Sequenciamento de Cromatina por Imunoprecipitação , Produtos Agrícolas/microbiologia , Regulação Bacteriana da Expressão Gênica , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Proteômica , Fatores de Transcrição/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência , Xanthomonas campestris/genética
8.
Front Microbiol ; 9: 507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636729

RESUMO

Acidovorax citrulli causes bacterial fruit blotch, a disease that poses a global threat to watermelon and melon production. Despite its economic importance, relatively little is known about the molecular mechanisms of pathogenicity and virulence of A. citrulli. Like other plant-pathogenic bacteria, A. citrulli relies on a type III secretion system (T3SS) for pathogenicity. On the basis of sequence and operon arrangement analyses, A. citrulli was found to have a class II hrp gene cluster similar to those of Xanthomonas and Ralstonia spp. In the class II hrp cluster, hrpG and hrpX play key roles in the regulation of T3SS effectors. However, little is known about the regulation of the T3SS in A. citrulli. This study aimed to investigate the roles of hrpG and hrpX in A. citrulli pathogenicity. We found that hrpG or hrpX deletion mutants of the A. citrulli group II strain Aac5 had reduced pathogenicity on watermelon seedlings, failed to induce a hypersensitive response in tobacco, and elicited higher levels of reactive oxygen species in Nicotiana benthamiana than the wild-type strain. Additionally, we demonstrated that HrpG activates HrpX in A. citrulli. Moreover, transcription and translation of the type 3-secreted effector (T3E) gene Aac5_2166 were suppressed in hrpG and hrpX mutants. Notably, hrpG and hrpX appeared to modulate biofilm formation. These results suggest that hrpG and hrpX are essential for pathogenicity, regulation of T3Es, and biofilm formation in A. citrulli.

9.
Mol Plant Pathol ; 18(4): 555-568, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27084974

RESUMO

The targeting of bacterial type III secretion systems (T3SSs), which are critical virulence factors in most Gram-negative pathogens, is regarded as an alternative strategy for the development of novel anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are two of the most important bacterial pathogens on rice, which cause leaf blight and leaf streak diseases, respectively. To identify potential anti-virulence drugs against these two pathogens, we screened a library of plant phenolic compounds and derivatives for their effects on the Xoo T3SS. Ten of 56 compounds significantly inhibited the promoter activity of a harpin gene, hpa1. These inhibitors were further tested for their impact on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results showed that pretreatment of Xoo with TS006 (o-coumaric acid, OCA), TS010, TS015 and TS018 resulted in significantly attenuated HR without affecting bacterial growth or survival. In addition, Cya translocation assays demonstrated that the translocation of two T3 effectors was suppressed by the four inhibitors. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced by treatment with the four inhibitors, suggesting that expression of the Xoo T3SS was suppressed. The expression of other virulence factors was not suppressed, which indicated possible T3SS-specific inhibition. Finally, we demonstrated that these inhibitors reduced the disease symptoms of Xoo and Xoc on the rice cultivar (Oryza sativa) IR24 to varying extents.


Assuntos
Oryza/microbiologia , Fenóis/farmacologia , Sistemas de Secreção Tipo III/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Oryza/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/imunologia , Nicotiana/microbiologia , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Água , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento
10.
FEMS Microbiol Lett ; 362(7)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25714547

RESUMO

Ralstonia solanacearum is the second most destructive bacterial plant pathogens worldwide and HrpG is the master regulator of its pathogenicity. PrhG is a close paralogue of HrpG and both belong to OmpR/PhoB family of two-component response regulators. Despite a high similarity (72% global identity and 96% similarity in helix-loop-helix domain), they display distinct roles in pathogenicity. HrpG is necessary for the bacterial growth in planta and pathogenicity, while PrhG is dispensable for bacterial growth in planta and contributes little to pathogenicity. The main difference between HrpG and PrhG is the 50-amino-acid-long C-terminal extension in PrhG (amino-acid residues 230-283), which is absent in HrpG. When this extension is deleted, truncated PrhGs (under the control of its native promoter) allowed complete recovery of bacterial growth in planta and wild-type virulence of hrpG mutant. This novel finding demonstrates that the extension region in PrhG is responsible for the functional difference between HrpG and PrhG, which may block the binding of PrhG to target promoters and result in impaired activation of hrp expression by PrhG and reduced virulence of R. solanacearum.


Assuntos
Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Solanum lycopersicum/microbiologia , Mutação , Fenótipo , Ralstonia solanacearum/genética , Ralstonia solanacearum/crescimento & desenvolvimento , Fatores de Transcrição/genética
11.
Front Microbiol ; 4: 349, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312090

RESUMO

Ralstonia solanacearum is a soil and water-borne pathogen that can infect a wide range of plants and cause the devastating bacterial wilt disease. To successfully colonize a host, R. solanacearum requires the type III secretion system (T3SS), which delivers bacterial effector proteins inside the plant cells. HrpG is a central transcriptional regulator that drives the expression of the T3SS and other virulence determinants. hrpG transcription is highly induced upon plant cell contact and its product is also post-transcriptionally activated by metabolic signals present when bacteria are grown in minimal medium (MM). Here, we describe a transcriptional induction of hrpG at early stages of bacterial co-culture with plant cells that caused overexpression of the downstream T3SS effector genes. This induction was maintained in a strain devoid of prhA, the outer membrane receptor that senses bacterial contact with plant cells, demonstrating that this is a response to an unknown signal. Induction was unaffected after disruption of the known R. solanacearum pathogenicity regulators, indicating that it is controlled by a non-described system. Moreover, plant contact-independent signals are also important in planta, as shown by the hrpG induction triggered by apoplastic and xylem extracts. We also found that none of the amino acids or sugars present in the apoplast and xylem saps studied correlated with hrpG induction. This suggests that a small molecule or an environmental condition is responsible for the T3SS gene expression inside the plants. Our results also highlight the abundance and diversity of possible carbon, nitrogen and energy sources likely used by R. solanacearum during growth in planta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA