Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Chem Biol Interact ; 402: 111192, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127184

RESUMO

The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging. Utilizing LC/MS-guided chemical analysis of the ethanol extract of S. chaenomeloides leaves, with a focus on major compounds, we successfully isolated two main phenolic compounds, tremulacin (1) and tremuloidin (2). Subsequently, we investigated the protective effects of tremulacin (1) and tremuloidin (2) in TNF-α-stimulated human dermal fibroblasts (HDFs). The results revealed that both tremulacin (1) and tremuloidin (2) inhibited TNF-α-stimulation-induced ROS, suppressed matrix metalloproteinase-1 (MMP-1) expression, and enhanced collagen secretion. This implies that both tremulacin (1) and tremuloidin (2) hold promise as preventive agents against photoaging-induced skin aging. Furthermore, we assessed the activity of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and heme oxygenase 1 (HO-1) to elucidate the mechanism of photoaging inhibition by tremuloidin (2), which exhibited superior efficacy. We found that tremuloidin (2) inhibited ERK and p38 phosphorylation and notably suppressed COX-2 expression while significantly upregulating HO-1 expression. These findings suggest potent anti-inflammatory and antioxidant properties of tremuloidin (2), positioning it as a potential candidate for combating photoaging-induced skin aging.

2.
Bioelectricity ; 6(2): 118-125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39119570

RESUMO

Electrochemotherapy (ECT) involves locally applying electrical pulses to permeabilize cell membranes, using electroporation (EP). This process enhances the uptake of low-permeant chemotherapeutic agents, consequently amplifying their cytotoxic effects. In melanoma treatment, dacarbazine (DTIC) is a cornerstone, but it faces limitations because of poor cell membrane penetration, necessitating the use of high doses, which, in turn, leads to increased side effects. In our study, we investigated the effects of DTIC and EP, both individually and in combination, on the melanoma cell line (SK-MEL-30) as well as human dermal fibroblasts (HDF) using in vitro assays. First, the effects of different DTIC concentrations on the viability of SK-MEL-30 and HDF cells were determined, revealing that DTIC was more effective against melanoma cells at lower concentrations, whereas its cytotoxicity at 1000 µM was similar in both cell types. Next, an ideal electric field strength of 1500 V/cm achieved a balance between permeability (84%) and melanoma cell viability (79%), paving the way for effective ECT. The combined DTIC-EP (ECT) application reduced IC50 values by 2.2-fold in SK-MEL-30 cells and 2.7-fold in HDF cells compared with DTIC alone. In conclusion, ECT not only increased DTIC's cytotoxicity against melanoma cells but also affected healthy fibroblasts. These findings emphasize the need for cautious, targeted ECT management in melanoma therapy.

3.
J Cosmet Dermatol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769897

RESUMO

BACKGROUND: Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are effective in the treatment of skin photoaging; however, their low yield and functional decline with passage progression limit their clinical application. Cell-derived nanovesicles (CNVs) are potential alternatives that can address the limitations of EVs derived from MSCs and are conducive to clinical transformations. Hair follicle mesenchymal stem cells (HFMSCs), a type of MSCs, have demonstrated the function of repairing skin tissues; nevertheless, the efficacy of CNVs from HFMSCs (HFMSC-CNVs) in the treatment of skin photoaging remains unclear. Therefore, ultraviolet radiation B (UVB)-induced photoaging nude mice and human dermal fibroblasts (HDFs) were used as experimental models to investigate the therapeutic effects of HFMSC-CNVs in photoaging models. METHODS: HFMSC-CNVs were successfully prepared using the mechanical extrusion method. UVB-induced nude mice and HDFs were used as experimental models of photoaging. Multiple approaches, including hematoxylin-eosin and Masson staining, immunohistochemistry, immunofluorescence, detection of reactive oxygen species (ROS), flow cytometry, western blotting, and other experimental methods, were combined to investigate the possible effects and mechanisms of HFMSC-CNVs in the treatment of skin photoaging. RESULTS: In the nude mouse model of skin photoaging, treatment with HFMSC-CNVs reduced UVB-induced skin wrinkles (p < 0.05) and subcutaneous capillary dilation, alleviated epidermis thickening (p < 0.001), and dermal thinning (p < 0.001). Furthermore, HFMSC-CNVs upregulated proliferating cell nuclear antigen (PCNA) expression (p < 0.05) and decreased the levels of ROS, ß-galactosidase (ß-Gal), and CD86 (p < 0.01). In vitro experiments, treatment with HFMSC-CNVs enhanced the cellular activity of UVB-exposed HDFs (p < 0.05), and reduced ROS levels and the percentage of senescent cells (p < 0.001), and alleviated cell cycle arrest (p < 0.001). HFMSC-CNVs upregulated the expression of Collagen I (Col I), SMAD2/3, transforming growth factor beta (TGF-ß), catalase (CAT), glutathione peroxidase-1 (GPX-1), and superoxide dismutase-1 (SOD-1) (p < 0.05) and downregulated the expression of cycle suppressor protein (p53), cell cycle suppressor protein (p21), and matrix metalloproteinase 3 (MMP3) (p < 0.05). CONCLUSION: Conclusively, the anti-photoaging properties of HFMSC-CNVs were confirmed both in vivo and in vitro. HFMSC-CNVs exert anti-photoaging effects by alleviating cell cycle arrest, decreasing cellular senescence and macrophage infiltration, promoting cell proliferation and extracellular matrix (ECM) production, and reducing oxidative stress by increasing the activity of antioxidant enzymes.

4.
Carbohydr Polym ; 338: 122173, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763720

RESUMO

The dynamic interplay between cells and their native extracellular matrix (ECM) influences cellular behavior, imposing a challenge in biomaterial design. Dynamic covalent hydrogels are viscoelastic and show self-healing ability, making them a potential scaffold for recapitulating native ECM properties. We aimed to implement kinetically and thermodynamically distinct crosslinkers to prepare self-healing dynamic hydrogels to explore the arising properties and their effects on cellular behavior. To do so, aldehyde-substituted hyaluronic acid (HA) was synthesized to generate imine, hydrazone, and oxime crosslinked dynamic covalent hydrogels. Differences in equilibrium constants of these bonds yielded distinct properties including stiffness, stress relaxation, and self-healing ability. The effects of degree of substitution (DS), polymer concentration, crosslinker to aldehyde ratio, and crosslinker functionality on hydrogel properties were evaluated. The self-healing ability of hydrogels was investigated on samples of the same and different crosslinkers and DS to obtain hydrogels with gradient properties. Subsequently, human dermal fibroblasts were cultured in 2D and 3D to assess the cellular response considering the dynamic properties of the hydrogels. Moreover, assessing cell spreading and morphology on hydrogels having similar modulus but different stress relaxation rates showed the effects of matrix viscoelasticity with higher cell spreading in slower relaxing hydrogels.


Assuntos
Reagentes de Ligações Cruzadas , Fibroblastos , Ácido Hialurônico , Hidrogéis , Bases de Schiff , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Bases de Schiff/química , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Células Cultivadas
5.
Front Bioeng Biotechnol ; 12: 1385730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803844

RESUMO

With cancer as one of the leading causes of death worldwide, there is a need for the development of accurate, cost-effective, easy-to-use, and fast drug-testing assays. While the NCI 60 cell-line screening as the gold standard is based on a colorimetric assay, monitoring cells electrically constitutes a label-free and non-invasive tool to assess the cytotoxic effects of a chemotherapeutic treatment on cancer cells. For decades, impedance-based cellular assays extensively investigated various cell characteristics affected by drug treatment but lack spatiotemporal resolution. With progress in microelectrode fabrication, high-density Complementary Metal Oxide Semiconductor (CMOS)-based microelectrode arrays (MEAs) with subcellular resolution and time-continuous recording capability emerged as a potent alternative. In this article, we present a new cell adhesion noise (CAN)-based electrical imaging technique to expand CMOS MEA cell-biology applications: CAN spectroscopy enables drug screening quantification with single-cell spatial resolution. The chemotherapeutic agent 5-Fluorouracil exerts a cytotoxic effect on colorectal cancer (CRC) cells hampering cell proliferation and lowering cell viability. For proof-of-concept, we found sufficient accuracy and reproducibility for CAN spectroscopy compared to a commercially available standard colorimetric biological assay. This label-free, non-invasive, and fast electrical imaging technique complements standardized cancer screening methods with significant advances over established impedance-based approaches.

6.
Cureus ; 16(4): e58958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800336

RESUMO

Background Ixora coccinea is a medicinal plant with many active constituents that are responsible for wound healing and have anticancer properties. Herbal extracts increase the mechanisms related to wound healing, like blood clotting, fighting infection, and epithelialization. The effect responsible for this property may be the presence of phytoconstituents like flavonoids, polyphenols, and alkaloids. Many researchers have evaluated the wound-healing effect of I. coccinea leaf extract in aqueous methanol. This study aimed to determine the in vitro wound healing and anticancer efficacy of I. coccinea leaf ethyl acetate extract and evaluate the in silico docking of the selected phytoconstituents of I. coccinea in the 2vcj protein. Materials and methods The human dermal fibroblast cell line was used to determine the rates of cell migration and proliferation for evaluating the wound-healing effect of the I. coccinea leaf ethyl acetate fraction. 4',6-diamidino-2-phenylindole (DAPI) fluorescence labeling was used to estimate the rate of cell migration. The one-step TUNEL (TdT-mediated dUTP Nick-End Labeling) in situ apoptosis kit and the annexin V-FITC/7-AAD apoptosis kit were used to perform DNA damage assays in the malignant melanoma cell line. The ethyl acetate fraction of I. coccinea leaves was analyzed for its impact on wound healing markers, including keratin-10, keratin-14, type IV collagen, and α-SMA. Results The wound-healing nature was interesting in the ethyl acetate fraction at doses of 50 µg/mL and 100 µg/mL. Both studies involved in the DNA damage study against malignant melanoma cell lines showed the cleavage of apoptotic cancer cells, which was detected using a fluorescence microscope. When compared with the control, a dose of 100 µg/ml of ethyl acetate fraction from the leaves of I. coccinea showed fibroblast migration of cells into the wound area. The statistical values were considered significant at the level of P < 0.05. An in silico docking study on the 2vcj protein revealed that selected phytoconstituents of I. coccinea resulted in good docking scores to inhibit Hsp90. Conclusion I. coccinea ethyl acetate leaf extract can inhibit the growth of malignant melanoma cell lines and promote wound healing, as shown by the study results. It might be a viable therapeutic modality for skin cancer.

8.
Int J Pharm ; 653: 123903, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38350500

RESUMO

Phospholipids are versatile formulation compounds with high biocompatibility. However, no data on their effect on skin in combination with UVA radiation exist. Thus, it was the aim of this work to (i) develop o/w nanoemulsions (NEs) differing in surfactant type and to investigate their physicochemical stability at different storage temperatures, (ii) establish a standardized protocol for in vitro phototoxicity testing using primary human skin cells and (iii) investigate the phototoxicity of amphoteric phospholipids (S45, S75, E80, S100, LPC80), sodium lauryl ether sulfate (SLES) and polysorbate 80 (PS80). Satisfying systems were developed with all surfactants except S100 due to low zeta potential (-21.4 mV ± 4.69). SLES and PS80-type NEs showed the highest stability after eight weeks; temperature-dependent variations in storage stability were most noticeable for phospholipid surfactants. For phospholipid-based NEs, higher phosphatidylcholine content led to unstable formulations. Phototoxicity assays with primary skin fibroblasts confirmed the lack of UVA-related phototoxicity but revealed cytotoxic effects of LPC80 and SLES, resulting in cell viability as low as 2.7 % ±0.78 and 1.9 % ±1.57 compared to the control. Our findings suggest that surfactants S45, S75 and PS80 are the most promising candidates for skin-friendly emulsifiers in sensitive applications involving exposure to UV light.


Assuntos
Dermatite Fototóxica , Tensoativos , Humanos , Tensoativos/química , Polissorbatos/farmacologia , Raios Ultravioleta , Fosfolipídeos , Emulsões/farmacologia , Pele
9.
Biotechnol J ; 19(2): e2300474, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403471

RESUMO

Mesenchymal stem cell (MSC) derived exosomes have emerged as potential acellular therapeutics for various tissue regenerative applications. However, successful clinical translation of exosome-based therapy is limited by lack of a structured production platform. Thus, in this study, the effect of decellularized extracellular matrix (dECM) was assessed on the production and potency of exosomes secreted by bone marrow-derived human MSCs. The results indicate that there was a ∼2-fold increase in MSC-exosome production when MSCs were cultured on dECM compared to TCP. Further, our study revealed that dECM generation induced by ascorbic acid (AA) up to 100 µg mL-1 highly increased exosome yield thereby indicating a potential scale up method for MSC exosome production. The bioactivity of exosomes was investigated by their ability to improve the healing of wounded human skin explants. Wound closure was enhanced in the presence of exosomes isolated from MSCs cultured on ascorbic acid-induced dECM compared to TCP generated MSC-exosomes. In summary, this study suggests a promising solution to a major bottleneck in large-scale production of MSC exosomes for cell-free therapy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Matriz Extracelular , Cicatrização , Ácido Ascórbico/farmacologia
10.
Biosci Biotechnol Biochem ; 88(5): 522-528, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38341279

RESUMO

Pulsed electrical stimulation (PES) is known to affect cellular activities. We previously found PES to human dermal fibroblasts (HFs) promoted platelet-derived growth factor subunit A (PDGFA) gene expression, which enhanced proliferation. In this study, we investigated PES effects on fibroblast collagen production and differentiation into myofibroblasts. HFs were electrically stimulated at 4800 Hz and 5 V for 60 min. Imatinib, a specific inhibitor of PDGF receptors, was treated before PES. After 6 h of PES, PDGFA, α-smooth muscle actin (α-SMA), and collagen type I α1 chain gene expressions were upregulated in PES group. Imatinib suppressed the promoted expression except for PDGFA. Immunofluorescence staining and enzyme-linked immunosorbent assay showed the production of α-SMA and collagen I was enhanced in PES group but suppressed in PES + imatinib group at 48 h after PES. Therefore, PES promotes the production of α-SMA and collagen I in fibroblasts, which is triggered by PDGFA that is upregulated early after PES.


Assuntos
Actinas , Colágeno Tipo I , Estimulação Elétrica , Fibroblastos , Fator de Crescimento Derivado de Plaquetas , Humanos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Actinas/metabolismo , Actinas/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Mesilato de Imatinib/farmacologia , Diferenciação Celular/efeitos dos fármacos , Pele/metabolismo , Pele/citologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Derme/citologia , Derme/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Regulação para Cima
11.
Aging Cell ; 23(5): e14123, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380598

RESUMO

Exposure to ultraviolet radiation can lead to skin photoaging, which increases the risk of skin tumors. This study aims to investigate how microRNA m6A modification contributes to skin photoaging. This study found that skin fibroblasts exposed to a single UVB dose of 30 mJ/cm2 exhibited characteristics of photoaging. The m6A level of total RNA decreased in photoaged cells with a down-regulated level of METTL14, and overexpression of METTL14 displayed a photoprotective function. Moreover, miR-100-3p was a downstream target of METTL14. And METTL14 could affect pri-miR-100 processing to mature miR-100-3p in an m6A-dependent manner via DGCR8. Furthermore, miR-100-3p targeted at 3' end untranslated region of ERRFI1 mRNA with an inhibitory effect on translation. Additionally, photoprotective effects of overexpression of METTL14 were reversed by miR-100-3p inhibitor or overexpression of ERRFI1. In UVB-induced photoaging of human skin fibroblasts, METTL14-dependent m6A can regulate miR-100-3p maturation via DGCR8 and affect skin fibroblasts photoaging through miR-100-3p/ERRFI1 axis.


Assuntos
Fibroblastos , Metiltransferases , MicroRNAs , Envelhecimento da Pele , Raios Ultravioleta , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Metiltransferases/metabolismo , Metiltransferases/genética , Envelhecimento da Pele/efeitos da radiação , Envelhecimento da Pele/genética , Pele/metabolismo , Pele/efeitos da radiação , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
12.
Nanomedicine (Lond) ; 19(3): 199-211, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38271055

RESUMO

Aim: To develop a novel stabilizing agent for silver nanoparticles (AgNPs) with the aim of enhancing its antibacterial efficacy against wound associated pathogens while mitigating their cytotoxic effect on human cells. Materials & methods: In this study, monodispersed gelatin nanoparticles were synthesized to stabilize AgNPs. The stability, antibacterial activity and biocompatibility of the gelatin-stabilized AgNPs (Gel-AgNPs) were compared with citrate-stabilized AgNPs (citrate-AgNPs) or silver ions. Results & conclusion: Gelatin-stabilized AgNPs showed significantly better antibacterial activities compared with citrate-stabilized AgNPs against both Gram-positive and Gram-negative bacteria. These Gel-AgNPs showed significantly lower cytotoxicity to human dermal fibroblasts compared with Ag+. These findings provided the first evidence substantiating a novel functionality of gelatin nanoparticles in both stabilizing and enhancing the activity of AgNPs.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Humanos , Antibacterianos/farmacologia , Prata/farmacologia , Gelatina , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Citratos , Testes de Sensibilidade Microbiana
13.
J Ethnopharmacol ; 324: 117763, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38253274

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sri Lankan traditional medicine uses Vernonia zeylanica and Mallotus repandus broadly for the treatment of a multitude of disease conditions, including wound healing. AIM OF THE STUDY: We aimed to scientifically validate the safety and efficacy of wound healing of an aqueous distillate of Vernonia zeylanica and Mallotus repandus (ADVM) mature leaves, tested on primary human dermal fibroblasts. MATERIALS AND METHODS: Human dermal fibroblasts isolated from clinical waste from circumcision surgery were characterized by flowcytometry and trilineage differentiation. The MTT dye reduction assay, and the ex vivo wound healing scratch assay established wound healing properties of ADVM using the primary human dermal fibroblast cell line. Upregulation of genes associated with wound healing (MMP3, COL3A1, TGFB1, FGF2) were confirmed by RT qPCR. GC-MS chromatography evaluated the phytochemical composition of ADVM. RESULTS: Compared to the synthetic stimulant, ß fibroblast growth factor, ADVM at 0.25% concentration on the primary dermal fibroblast cell line exhibited significant ex vivo, (i) 1.7-fold % cell viability (178.7% vs 304.3 %, p < 0.001), (ii) twofold greater % wound closure (%WC) potential (47.74% vs 80.11%, p < 0.001), and (iii) higher rate of % WC (3.251 vs 3.456 % WC/h, p < 0.05), sans cyto-genotoxicity. Up regulated expression of FGF2, TGFB1, COL3A1 and MMP3, genes associated with wound healing, confirmed effective stimulation of pathways of the three overlapping phases of wound healing (P < 0.05). GC-MS profile of ADVM characterized four methyl esters, which may be posited as wound healing phytochemicals. CONCLUSIONS: Exceeding traditional medicine claims, the exvivo demonstration of rapid skin regeneration, reiterated by upregulated expression of genes related to wound healing pathways, sans cytotoxicity, propounds ADVM, cued from traditional medicine, as a potential safe and effective natural stimulant for rapid wound-healing. Additionally, it may serve as an effective proliferative stimulant of dermal fibroblasts for cell therapy, with potential in reparative and regenerative therapy of skin disorders.


Assuntos
Mallotus (Planta) , Vernonia , Masculino , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Extratos Vegetais/química , Cicatrização , Pele , Medicina Tradicional , Fibroblastos
14.
Antioxidants (Basel) ; 13(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247533

RESUMO

The process of cellular senescence, which is characterized by stable cell cycle arrest, is strongly associated with dysfunctional cellular metabolism and circadian rhythmicity, both of which are reported to result from and also be causal to cellular senescence. As a result, modifying any of them-senescence, metabolism, or the circadian clock-may affect all three simultaneously. Obesity accelerates aging by disrupting the homeostasis of reactive oxygen species (ROS) via an increased mitochondrial burden of fatty acid oxidation. As a result, if senescence, metabolism, and circadian rhythm are all linked, anti-obesity treatments may improve metabolic regulation while also alleviating senescence and circadian rhythm. Vutiglabridin is a small molecule in clinical trials that improves obesity by enhancing mitochondrial function. We found that chronic treatment of senescent primary human dermal fibroblasts (HDFs) with vutiglabridin alleviates all investigated markers of cellular senescence (SA-ß-gal, CDKN1A, CDKN2A) and dysfunctional cellular circadian rhythm (BMAL1) while remarkably preventing the alterations of mitochondrial function and structure that occur during the process of cellular senescence. Our results demonstrate the significant senescence-alleviating effects of vutiglabridin, specifically with the restoration of cellular circadian rhythmicity and metabolic regulation. These data support the potential development of vutiglabridin against aging-associated diseases and corroborate the intricate link between cellular senescence, metabolism, and the circadian clock.

15.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255551

RESUMO

Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue. Nevertheless, ensuring the effectiveness and safety of these textiles remains a persistent challenge. To achieve this, we conduct a comprehensive study that systematically compares the effectiveness and potential toxicity of five commonly used antimicrobial agents. To guide decision making, a MULTIMOORA method is employed to select and rank the optimal antimicrobial textile finishes. Through this approach, we determine that silver nitrate is the most suitable choice, while a methoxy-terminated quaternary ammonium compound is deemed less favorable in meeting the desired criteria. The findings of this study offer valuable insights and guidelines for the development of antimicrobial textiles that effectively address the requirements of effectiveness, safety, and durability. Implementing these research outcomes within the textile industry can significantly enhance protection against microbial infections, contribute to the improvement of public health, and mitigate the spread of infectious diseases.

16.
Biol. Res ; 48: 1-8, 2015. graf
Artigo em Inglês | LILACS | ID: biblio-950773

RESUMO

BACKGROUND: Various health benefits have been attributed to Er-Miao-San (EMS), a traditional Chinese herbal formulation that contains equal amounts of cortex phellodendri (Phellodendron amurense Ruprecht) and rhizoma atractylodis (Atractylodes lancea D.C). However, its effect on the anti-inflammatory activity in human dermal fibroblasts (HDFs) and the mechanism underlying this effect are unknown. RESULTS: This study investigated the effects of EMS on TNF-α-induced MMP-1 expression in HDFs. Our data show that EMS inhibited TNF-α-induced MMP-1 expression in a concentration-dependent manner. Interestingly, EMS maintained IkB content without inhibiting the phosphorylation of MAPKs, which are well-established upstream kinases of NF-kB. Moreover, EMS reduced the level of nuclear p65 protein in HDFs. Luciferase assay revealed that EMS inhibits the transcriptional activity of NF-kBbystabilizing IkB. Our results show that EMS exerts its anti-inflammatory effect by inhibiting NF-kB-regulated genes such as IL-1ß and IL-8. Moreover, EMS effectively inhibited TNF-α-induced expression of MMP-1 via the NF-kBpathway. CONCLUSIONS: Taken together, our data suggest that EMS could potentially be used as an anti-inflammatory and anti-aging treatment.


Assuntos
Humanos , Envelhecimento/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Derme/citologia , Metaloproteinase 1 da Matriz/biossíntese , Fibroblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-8/efeitos dos fármacos , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fibroblastos/enzimologia , Anti-Inflamatórios/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA