Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 16(1): 24, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547989

RESUMO

To monitor and manage hydrological systems such as brooks, streams, rivers, the use of tracers is a well-established process. Limited number of potential tracers such as salts, isotopes and dyes, make study of hydrological processes a challenge. Traditional tracers find limited use due to lack of multiplexed, multipoint tracing and background noise, among others. In this regard, DNA based tracers possess remarkable advantages including, environmentally friendly, stability, and high sensitivity in addition to showing great potential in the synthesis of ideally unlimited number of unique tracers capable of multipoint tracing. To prevent unintentional losses in the environment during application and easy recovery for analysis, we hereby report DNA encapsulation in silica containing magnetic cores (iron oxide) of two different shapes-spheres and cubes. The iron oxide nanoparticles having size range 10-20 nm, have been synthesized using co-precipitation of iron salts or thermal decomposition of iron oleate precursor in the presence of oleic acid or sodium oleate. Physico-chemical properties such as size, zeta potential, magnetism etc. of the iron oxide nanoparticles have been optimized using different ligands for effective binding of dsDNA, followed by silanization. We report for the first time the effect of surface coating on the magnetic properties of the iron oxide nanoparticles at each stage of functionalization, culminating in silica shells. Efficiency of encapsulation of three different dsDNA molecules has been studied using quantitative polymerase chain reaction (qPCR). Our results show that our DNA based magnetic tracers are excellent candidates for hydrological monitoring with easy recoverability and high signal amplification.

3.
Chemosphere ; 144: 2489-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26630289

RESUMO

Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation.


Assuntos
Acetamidas/metabolismo , Poluentes Ambientais/metabolismo , Herbicidas/metabolismo , Plantas/metabolismo , Biodegradação Ambiental , Hidrologia , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA