Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 867: 161471, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634778

RESUMO

Satellite aerosol optical depth (AOD) provides an alternative way to depict the spatial distribution of near-surface PM2.5. In this study, a mathematical formulation of how PM2.5 is related to AOD is presented. When simplified to a linear equation, a functional dependence of the slope on the aerosol type, scattering enhancement factor f(RH), and boundary layer height is revealed, while the influence of the vertical aerosol profile is embedded in the intercept. Specifically, we focus on the effects of aerosol properties and employ a new aerosol index (Normalized Gradient Aerosol Index, NGAI) for classifying aerosol subtypes. The combination of AOD difference at shorter wavelengths over longer-wavelength AOD from AERONET data could distinguish and subclassify aerosol types previously indistinguishable by AE (i.e., urban-industrial pollution, U/I, and biomass burning, BB). AOD-PM2.5 regressions are performed on these aerosol subtypes at various relative humidity (RH) levels. The results suggest that BB aerosols are nearly hydrophobic until the RH exceeds 80 %, while the AOD-PM2.5 regressions for U/I depend on RH levels. Moreover, the scattering enhancement factor f(RH) can be calculated by taking the ratio of intercepts between dry and humidity conditions, which is proposed and tested for the first time in this study. Our results show an f(RH ≥ 80 %) of ∼2.6 for U/I-dominated aerosols, whereas the value is not over 1.5 for BB aerosols. The f(RH) can be further used to derive the optical hygroscopicity parameter (κsca), demonstrating that the NGAI can be used to exploit differences in aerosol hygroscopicity and improve the AOD-PM2.5 relationship.

2.
J Environ Sci (China) ; 126: 483-493, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503775

RESUMO

When exposed to different relative humidities (RHs), the optical properties of atmospheric aerosols will change because of changes in the aerosol particle size and complex refractive index (RI), which will affect haze formation and global climate change. The potential contributions of ultrafine particles to the atmospheric optical characteristics and to haze spreading cannot be ignored because of their high particle number concentrations and strong diffusibility; measurement of the optical properties of wet ultrafine particles is thus highly important for environmental assessment. Therefore, a surface plasmon resonance microscopy with azimuthal rotation illumination (SPRM-ARI) system is designed to determine the RIs of single particle aerosols with diameters of less than 100 nm in the hygroscopic growth process. Measurements are taken using mixed single particles with different mass ratios. The RIs of mixed single aerosols at different RHs are retrieved by measuring the scattering light intensity using the SPRM-ARI system and almost all the RIs of the bicomponent particles with different mass ratios decrease with increasing water content under high RH conditions. Finally, for each of the bicomponent particles, the maximum standard deviations for the retrieved RI values are only 2.06×10-3, 3.08×10-3 and 3.83×10-3, corresponding to the NaCl and NaNO3 bicomponent particles with a 3:1 mass ratio at 76.0% RH, the NaCl and glucose particles with a 1:3 mass ratio at 89.0% RH, and the NaCl and OA particles with a 1:1 mass ratio at 78.0% RH, respectively; these results indicate that the high-sensitivity SPRM-ARI system can measure the RI effectively and accurately.


Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Microscopia , Material Particulado , Peptídeos e Proteínas de Sinalização Intercelular , Bismuto
3.
Sci Total Environ ; 857(Pt 1): 159233, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208762

RESUMO

The influence of relative humidity on aerosol properties and the direct radiative forcing of PM10 and PM1 were investigated in Beijing from January 2018 to December 2019. The annual mean scattering hygroscopic growth factor at RH = 80 % [f(80 %)] of PM10 and PM1 were 1.60 ± 0.24 and 1.58 ± 0.22, respectively. The variation of aerosol hygroscopic growth factors of PM10 and PM1 aerosols was similar, which is mainly due to the fact that aerosol scattering in Beijing is dominated by fine particles. The seasonal mean f(80 %) of PM10 from spring to winter were 1.66 ± 0.23, 1.71 ± 0.25, 1.51 ± 0.20, 1.49 ± 0.16, respectively, which were higher in spring and summer, and lower in autumn and winter. The diurnal variation of f(80 %) was relatively higher from 12:00 to 18:00, which could be related to the formation of secondary aerosols by photochemical reactions. f(80 %) shows a strong positive relationship with both the scattering Angström exponent (SAE) and the single scattering albedo (ω0) under dry conditions; therefore, the scattering hygroscopic growth factor could be estimated using these two parameters. The upscatter fraction (ß) and single scattering albedo, which are the key aerosol optical properties for the calculation of direct radiative forcing, are also RH-dependent. As RH increases, the upscatter fraction (backscatter fraction) decreases and ω0 increases. The aerosol radiative forcing at RH 80 % was 1.48 times as that in the dry state. The sensitivity experiment showed that the variation in the scattering coefficient with relative humidity had the greatest influence on radiation forcing, followed by ß and ω0. The seasonal variation of ΔF(80 %)/ΔF(dry) coincides with that of the aerosol hygroscopic growth factor. Our study suggests that understanding the influence of relative humidity on aerosol properties and direct radiative forcing is important for accurately estimating the radiative forcing of aerosols.


Assuntos
Molhabilidade , Pequim , Aerossóis/análise , Estações do Ano
4.
Huan Jing Ke Xue ; 42(2): 574-583, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742851

RESUMO

Aerosol hygroscopic growth factors[g(RH)] are key for evaluating aerosol light extinction and direct radiative forcing. The hygroscopic tandem differential mobility analyzer (HTDMA) was utilized to measure the size-resolved gm(RH) under different polluted conditions in winter in Tianjin. Furthermore, based on the size distribution of aerosol water-soluble ions, the gκ(RH) across a wide size range (60 nm to 9.8 µm) was estimated using the κ-Köhler theory, which provides a basis for the estimation of aerosol optical parameters and direct radiative forcing under ambient conditions. Under clean conditions, ultrafine particles (<100 nm) were more hygroscopic and gm(RH=80%) was higher than 1.30 due to the active photolysis reaction. However, under severely polluted conditions, the proportion of water-soluble ions in aerosols increased with the increasing size; gm(RH) increased with particle size, where gm(RH=80%) and gm(RH=85%) for 300 nm particles was 1.39 and 1.46, respectively. For a wide size range (60 nm to 9.8 µm), the aerosols in the accumulation mode were more hygroscopic and aerosols in the Aitken mode were less hygroscopic, with coarse mode aerosols being the least hygroscopic. During the polluted period, the particulate size notably increased, and the mass fraction of NO3- and SO42- in the accumulation mode aerosols was significantly higher than during the clean period. Accordingly, the hygroscopicity of accumulation mode aerosols was strongly enhanced during the polluted period[gκ(RH)=1.3-1.4] and aerosols in the 0.18-3.1 µm size range all had a strong hygroscopicity. On polluted days, the synergistic effect of the increase in particle size, water-soluble ions, and aerosol hygroscopicity results in the considerable deterioration of visibility.

5.
Sci Total Environ ; 557-558: 285-95, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016676

RESUMO

We examined the hygroscopic properties of water-soluble matter (WSM) nebulized from water extracts of total suspended particles (TSP) collected at Chichijima Island in the western North Pacific during January to September 2003. The hygroscopic growth factor g(RH) of the aerosol particles was measured using a hygroscopic tandem differential mobility analyzer (HTDMA) with an initial dry particle diameter of 100nm and relative humidity (RH) of 5-95%. The measured growth factor at 90% RH, g(90%), ranged from 1.51 to 2.14 (mean: 1.76±0.15), significantly lower than that of sea salts (2.1), probably owing to the heterogeneous reactions associated with chloride depletion in sea-salt particles and water-soluble organic matter (WSOM). The g(90%) maximized in summer and minimized in spring. The decrease in spring was most likely explained by the formation of less hygroscopic salts or particles via organometallic reactions during the long-range transport of Asian dust. Cl(-) and Na(+) dominate the mass fractions of WSM, followed by nss-SO4(2-) and WSOM. Based on regression analysis, we confirmed that g(90%) at Chichijima Island largely increased due to the dominant sea spray; however, atmospheric processes associated with chloride depletion in sea salts and WSOM often suppressed g(90%). Furthermore, we explored the deviation (average: 18%) between the measured and predicted g(90%) by comparing measured and model growth factors. The present study demonstrates that long-range atmospheric transport of anthropogenic pollutants (SO2, NOx, organics, etc.) and the interactions with sea-salt particles often suppress the hygroscopic growth of marine aerosols over the western North Pacific, affecting the remote background conditions. The present study also suggests that the HCl liberation leads to the formation of less hygroscopic aerosols over the western North Pacific during long-range transport.

6.
J Environ Sci (China) ; 40: 35-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969543

RESUMO

The optical properties of aerosol as well as their impacting factors were investigated at a suburb site in Nanjing during autumn from 14 to 28 November 2012. More severe pollution was found together with lower visibility. The average scattering and absorption coefficients (Bsca and Babs) were 375.7 ± 209.5 and 41.6 ± 18.7 Mm(-1), respectively. Higher Ångström absorption and scattering exponents were attributed to the presence of more aged aerosol with smaller particles. Relative humidity (RH) was a key factor affecting aerosol extinction. High RH resulted in the impairment of visibility, with hygroscopic growth being independent of the dry extinction coefficient. The hygroscopic growth factor was 1.8 ± 1.2 with RH from 19% to 85%. Light absorption was enhanced by organic carbon (OC), elemental carbon (EC) and EC coatings, with contributions of 26%, 44% and 75% (532 nm), respectively. The Bsca and Babs increased with increasing N100 (number concentration of PM2.5 with diameter above 100 nm), PM1 surface concentration and PM2.5 mass concentration with good correlation.


Assuntos
Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Umidade , Fenômenos Ópticos , Tamanho da Partícula , Material Particulado/análise , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA