Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 215: 79-91, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35718147

RESUMO

We investigated the potential efficacy and underlying mechanisms of Lotus seed Resistant Starch (LRS) for regulating hyperlipidemia in mice fed a High-fat Diet (HFD). Mouse were fed a normal diet (Normal Control group, NC group), HFD alone (MC group), HFD plus lovastatin (PC group), or HFD with low/medium/high LRS (LLRS, MLRS, and HLRS groups, respectively) for 4 weeks. LRS supplementation significantly decreased body weight and significantly reduced serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipopro-tein cholesterol compared with the MC group. LRS also significantly alleviated hepatic steatosis, especially in the MLRS group, which also showed a significantly reduced visceral fat index. LLRS supplementation significantly regulated genes associated with glycerolipid metabolism and steroid hormone biosynthesis (Lpin1 and Ugt2b38), MLRS significantly regulated genes related to fatty acid degradation, fatty acid elongation, and glycerolipid metabolism (Lpin1, Hadha, Aldh3a2, and Acox1), whereas HLRS significantly regulated genes related to fatty acid elongation and glycerolipid metabolism (Lpin1, Elovl3, Elovol5, and Agpat3). The fatty acid-degradation pathway regulated by MLRS thus exerts better control of serum lipid levels, body weight, visceral fat index, and liver steatosis in mice compared with LLRS- and HLRS-regulated pathways.


Assuntos
Fígado Gorduroso , Hiperlipidemias , Animais , Peso Corporal , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidato Fosfatase/metabolismo , Amido Resistente
2.
Pharmacognosy Res ; 4(2): 109-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22518083

RESUMO

BACKGROUND: Polycystic ovarian syndrome (PCOS), characterized by ovulatory infertility and hyperandrogenism, is associated with metabolic complications such as dyslipidemia, insulin resistance and endothelial dysfunction. Almost 70% PCOS women have abnormal serum lipid levels (dyslipidemia) and 50% of these women are obese. Several classes of pharmacological agents have been used to manage dyslipidemia. However, studies have shown adverse effects associated with these drugs. In the light of alternate therapy, many medicinal herbs have been reported to show hypoglycemic, anti-hyperlipidemic potential. Aloe barbadensis Mill. or Aloe vera is reported as one such herb. This study was to evaluate the lipid correcting effect of Aloe vera gel (AVG) in a PCOS rat model. MATERIALS AND METHODS: PCOS was induced in Charles Foster female rats by oral administration of non-steroidal aromatase inhibitor letrozole (0.5 mg/kg body weight, 21 days). All rats were hyperglycemic and 90% rats also showed elevated plasma triglycerides, elevated LDL cholesterol levels, and lowered plasma HDL cholesterol levels indicative of a dyslipidemic profile. PCOS positive rats with an aberrant lipid profile were selected for treatment. An AVG formulation (1 ml (10 mg)/day, 30 days) was administered orally. RESULTS AND CONCLUSION: AVG treated PCOS rats exhibited significant reduction in plasma triglyceride and LDL cholesterol levels, with an increase in HDL cholesterol. The gel treatment also caused reversion of abnormal estrous cyclicity, glucose intolerance, and lipid metabolizing enzyme activities, bringing them to normal. In conclusion, AVG has phyto components with anti-hyperlipidemic effects and it has shown efficacy in management of not only PCOS but also the associated metabolic complication : dyslipidemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA