Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.171
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 446-458, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39098278

RESUMO

5-aminolevulinic acid photodynamic therapy (ALA-PDT) is an emerging therapeutic strategy for skin cancer due to its noninvasiveness and high spatiotemporal selectivity. However, poor skin penetration, poor intratumoral delivery, the instability of aqueous ALA, and the tumor's inherent hypoxia microenvironment are major hurdles hindering the efficacy of ALA-PDT. Herein, we aim to address these challenges by using microneedles (MNs) to assist in delivering nanoparticles based on natural polymeric tea polyphenols (TP NPs) to self-assemble and load ALA (ALA@TP NPs). The TP NPs specifically increase cellular uptake of ALA by A375 and A431 cells and reduce mitochondrial membrane potential. Subsequently, the photosensitizer protoporphyrin IX derived from ALA accumulates in the tumor cells in a dose-dependent manner with TP NPs, generating reactive oxygen species to promote apoptosis and necrosis of A375 and A431 cells. Interestingly, TP NPs can ameliorate the tumor's inherent hypoxia microenvironment and rapid oxygen consumption during PDT by inhibiting hypoxia inducible factor-1α, thereby boosting reactive oxygen species (ROS) generation and enhancing ALA-PDT efficacy through a positive feedback loop. After ALA@TP NPs are loaded into MNs to fabricate ALA@TP NPs@MNs, the MNs enhance skin penetration and storage stability of ALA. Importantly, they exhibit remarkable antitumor efficacy in A375-induced melanoma and A431-induced squamous cell carcinoma with a reduced dose of ALA and reverse hypoxia in vivo. This study provides a facile and novel strategy that integrates MNs and green NPs of TP for addressing the bottlenecks of ALA-PDT and enhancing the ALA-PDT efficacy against skin cancers for future clinical translation.


Assuntos
Ácido Aminolevulínico , Nanopartículas , Agulhas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polifenóis , Neoplasias Cutâneas , Chá , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Polifenóis/química , Polifenóis/farmacologia , Humanos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Chá/química , Camundongos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Propriedades de Superfície , Camundongos Endogâmicos BALB C
2.
Ecotoxicol Environ Saf ; 285: 117135, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353379

RESUMO

BACKGROUND: Hypoxia caused by global climate change and human activities has become a growing concern eliciting serious effect and damages to aquatic animals. Hexagrammos otakii is usually a victim of hypoxia which caused by high density aquaculture and high nutrient input. The mechanism underlying ferroptosis regulation after hypoxia-stress in liver of H. otakii, however, remains elusive. METHODS: For a duration of 15 days, expose the H. otakii to low concentrations of dissolved oxygen (3.4 ± 0.2 mg/L). Detecting alterations in the H. otakii liver tissue by chemical staining, immunohistochemistry, and electron microscopy. The expression variations of relevant genes in the liver of the H. otakii were simultaneously detected using Western blot and qPCR. A correlation analysis was performed between HIF-1α and iron ion expression in the liver of H. otakii following hypoxic stress. RESULTS: In this study, we conducted the whole ferroptosis integrated analysis of H. otakii under chronic hypoxic condition. Reactive oxygen species (ROS) are highly accumulated under the hypoxia treatment (Superoxide Dismutase, SOD; Catalase, CAT), and which results in a significantly enhanced of lipid peroxidation (Lipid Peroxidation, LPO; Malondialdehyde, MDA; Aminotransferase, AST; Alanine aminotransferase, ALT) in liver tissue. The HIF-1α signaling is activated to cope with the hypoxia stress through strategies including changing iron ion concentration (Fe3+ and TFR1) to breaking the oxidation balance (GSH and GSH-Px), and enhancing ferroptosis gene expression (GPX4). The expression of genes related to ferroptosis pathway (DMT1, FTH1, STEAP3, ACSL4, γ-GCS, SLC7A11) is significantly upregulated and associated to the expression of iron and HIF-1α. CONCLUSIONS: It is demonstrated that the HIF-1α/Fe3+/ROS/GPX4 axis is involved in promoting ferroptosis in fat greening hepatocytes following hypoxia-stress. Ultimately, our findings unveil a process by which hypoxic stress strongly encourages ferroptosis by triggering HIF-1α and boosting iron synthesis.

3.
Mol Med Rep ; 30(6)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39392038

RESUMO

Following the publication of the above article, the authors drew to the Editor's attention that they had inadvertently used the same immunohistochemical image to show the experiments depicting the zoledronic acid­treated MCF­7/HIF­1α xenograft (the 'ZOL/MCF­7/hif' panel) and the fulvestrant­treated MCF­7/vector xenograft (the 'FUL/MCF­7/cdh' panel) in Fig. 3A on p. 5474. Subsequently, upon performing an independent review of the data in this paper, the Editorial Office pointed out to the authors that the same colony­formation assay image had been included in Fig. 1C to show the 'MCF­7/cdh­ZOL' and 'MCF­7/cdh­FUL' experiments. The authors re­examined their original data, and realized that inadvertent errors were made during the compilation of this pair of figures. The corrected versions of Figs. 1 and 3 are shown on the next two pages, now featuring the correct data for the 'MCF­7/cdh­ZOL' experiment in Fig. 1C and the 'ZOL/MCF­7/hif' experiment in Fig. 3A. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of Molecular Medicine Reports for granting them the opportunity to publish this. Furthermore, they regret that these errors were introduced into the paper, even though they did not substantially alter any of the major conclusions reported in the paper, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 17: 5470­5476, 2018; DOI: 10.3892/mmr.2018.8514].

4.
Nitric Oxide ; 153: 1-12, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369813

RESUMO

Metabolic-associated fatty liver disease (MAFLD) encompasses various chronic liver conditions, yet lacks approved drugs. Hypoxia-inducible factor-1α (HIF-1α) is pivotal in MAFLD development. Our prior research highlighted the efficacy of the nano-designed carbon monoxide (CO) donor, targeting HIF-1α in a mouse hepatic steatosis model. Given heme oxygenase-1 (HO-1, a major downstream molecule of HIF-1α) as the primary source of intrinsic CO, we hypothesized that upregulation of HO-1/CO, responsive to HIF-1α, forms a negative feedback loop regulating MAFLD progression. In this study, we explored the potential negative feedback mechanism of CO on HIF-1α and its downstream effects on MAFLD advancement. HIF-1α emerges early in hepatic steatosis induced by a high-fat (HF) diet, triggering increased HO-1 and inflammation. SMA/CORM2 effectively suppresses HIF-1α and steatosis progression when administered within the initial week of HF diet initiation but loses impact later. In adipose tissues, concurrent metabolic dysfunction and inflammation with HIF-1α activation suggest adipose tissue expansion initiates HF-induced steatosis, triggering hypoxia and liver inflammation. Notably, in an in vitro study using mouse hepatocytes treated with fatty acids, downregulating HO-1 intensified HIF-1α induction at moderate fatty acid concentrations. However, this effect diminished at high concentrations. These results suggest the HIF-1α-HO-1-CO axis as a feedback loop under physiological and mild pathological conditions. Excessive HIF-1α upregulation in pathological conditions overwhelms the CO feedback loop. Additional CO application effectively suppresses HIF-1α and disease progression, indicating potential application for MAFLD control.

5.
Biomed Rep ; 21(6): 180, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39387002

RESUMO

Myocardial infarction is characterized by oxygen deficiency caused by arterial flow restriction. Salidroside (SAL) protects against myocardial damage via antioxidant production and inhibition of apoptosis. The present study aimed to investigate potential rescue mechanism of SAL on hypoxic cardiomyocytes. H9C2 cardiomyocytes were divided into normoxia, hypoxia and hypoxia + SAL groups. The inhibitory rate of hypoxia and the optimal concentration and rescue effect of SAL were determined using Cell Counting Kit-8 assay and flow cytometry. Ca2+ concentration following hypoxia treatment and SAL intervention were detected by Fluo-4/acetoxymethyl. Tandem mass tag (TMT) proteomics was used to analyze the differential expression of hypoxia-associated proteins among the three groups. SAL exerted a protective effect on hypoxia-injured cardiomyocytes by enhancing aerobic metabolism during hypoxia and rescuing cardiomyocytes from hypoxic damage. SAL promoted cell proliferation, decreased apoptosis and increased Ca2+ levels in cell membranes of hypoxic cardiomyocytes. TMT proteomics results showed that the expression levels of intracellular hypoxia inducible factor-1 (HIF)-1α and Egl-9 family HIF 1 (EGLN1) in H9C2 cells were elevated under hypoxic conditions. However, SAL significantly decreased expression levels of HIF-1α and EGLN1. SAL inhibited mitochondrial calcium overload in hypoxic cardiomyocytes and attenuated expression of hypoxia-associated factors. SAL exerted its rescue effect on hypoxic cardiomyocytes through the EGLN1/HIF-1α pathway, thereby suppressing cardiomyocyte apoptosis, improving mitochondrial energy metabolism efficiency and rescuing cardiomyocytes from hypoxic injury.

6.
J Oral Rehabil ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363428

RESUMO

BACKGROUND: Condylar fractures (CFs) are a common type of maxillofacial trauma, especially in adolescents. Conservative treatment of CF avoids the possible complications of surgical intervention, but prolongs the patient's suffering because of the requirement for extended intermaxillary fixation. Therefore, the development of a new strategy to accelerate the rate of fracture healing to shorten the period of conservative treatment is of great clinical importance. OBJECTIVE: To investigate the potential of deferoxamine (DFO) in promoting the healing process of CF in adolescent mice. METHODS: Thirty-two 4-week-old male C57BL/6J mice were randomly assigned to four groups: vehicle + sham group, vehicle + CF group, DFO + sham group and DFO + CF group. After constructing the mandibular CF model, mandibular tissue samples were collected respectively at 1, 2 and 4 weeks postoperatively. Radiographic and histomorphometric analyses were employed to assess bone tissue healing and vascular formation. RESULTS: Deferoxamine was observed to promote the early bone healing of fracture, both radiologically and histomorphometrically. Furthermore, this enhancement of condylar neck fracture healing was attributed to the upregulation of the hypoxia-inducible factor-1α (HIF-1α) signalling pathway while facilitating the formation of type H vessels. In addition, DFO did not produce significant effects on the condylar neck between vehicle + sham and DFO + sham group. CONCLUSION: The application of the HIF-1α inducer DFO can enhance type H vessels expansion thereby accelerating condylar neck fracture healing.

7.
Aging (Albany NY) ; 162024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382942

RESUMO

Testicular cancer, a highly prevalent malignancy among young adults, has witnessed an alarming rise in recent decades. This study delves into the therapeutic potential of isoalantolactone (IATL), a natural product extracted from Inula helenium and Inula racemosa, against testicular cancer. Employing MTT assays and flow cytometry, we observed a dose-dependent reduction in cell viability and induction of cell cycle arrest at sub-G1 phase with increasing IATL concentrations. Furthermore, Annexin V/PI dual staining revealed IATL-induced apoptosis. Human Apoptosis Array analysis demonstrated IATL's influence on HIF-1α and TNF R1 expression, implicating its role in cancer cell growth and death regulation. Next-generation sequencing (NGS) and pathway analysis highlighted the involvement of ferroptosis and HIF-1 signaling in IATL-mediated effects. Western blotting validated the downregulation of key proteins associated with apoptosis inhibition and activation, confirming IATL's potential as an anticancer agent. Moreover, IATL induced ferroptosis by modulating expression levels of GPX4, xCT, NRF2, and HO-1. Our findings shed light on IATL's multifaceted anticancer mechanisms, emphasizing its potential as a therapeutic candidate for testicular cancer.

8.
Cell Biochem Biophys ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342069

RESUMO

Periodontitis is a prevalent condition characterized by inflammation and tissue destruction within the periodontium, with hypoxia emerging as a contributing factor to its pathogenesis. Hypoxia-inducible factor 1α (HIF-1α) has a crucial role in orchestrating adaptive responses to hypoxic microenvironments and has been implicated in various inflammatory-related diseases. Understanding the interplay between HIF-1α, matrix metalloproteinases (MMPs), and inflammatory responses in periodontitis could provide insights into its molecular mechanisms. We investigated the relationship between HIF-1α, MMP2, and MMP9 in gingival crevicular fluid (GCF) and periodontal ligament stem cells (PDLSCs) from periodontitis patients. The expression levels of HIF-1α, MMP2, MMP9, and inflammatory factors (IL-6, IL-1ß, TNF-α) were assessed using enzyme-linked immunosorbent assay (ELISA) and real-time PCR (RT-PCR). Additionally, osteogenic differentiation of PDLSCs was identified by alkaline phosphatase activity. Significantly elevated levels of HIF-1α, MMP2, and MMP9 were observed in GCF of periodontitis patients compared to controls. Positive correlations were found between HIF-1α and MMP2/MMP9, as well as with IL-6, IL-1ß, and TNF-α. Modulation of HIF-1α expression in PDLSCs revealed its involvement in MMP2/9 secretion and inflammatory responses, with inhibition of HIF-1α mitigating these effects. Furthermore, HIF-1α inhibition alleviated the reduction in osteogenic differentiation induced by inflammatory stimuli. Our findings elucidate the regulatory role of HIF-1α in MMP expression, inflammatory responses, and osteogenic differentiation in periodontitis. In conclusion, targeting HIF-1α signaling pathways may offer therapeutic opportunities for managing periodontitis and promoting periodontal tissue regeneration.

9.
Exp Ther Med ; 28(6): 433, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39347495

RESUMO

Ferroptosis, as a unique form of cell death caused by iron overload and lipid peroxidation, is involved in the pathogenesis of various inflammatory diseases of the airways. Inhibition of ferroptosis has become a novel strategy for reducing airway epithelial cell death and improving airway inflammation. The aim of the present study was to analyze and validate the key genes and signaling pathways associated with ferroptosis by bioinformatic methods combined with experimental analyzes in vitro and in vivo to aid the diagnosis and treatment of neutrophilic asthma. A total of 1,639 differentially expressed genes (DEGs) were identified in the transcriptome dataset. After overlapping with ferroptosis-related genes, 11 differentially expressed ferroptosis-related genes (DE-FRGs) were obtained. A new diagnostic model was constructed by these DE-FRGs from the transcriptome dataset with those from the GSE108417 dataset. The receiver operating characteristic curve analysis indicated that the area under the curve had good diagnostic performance (>0.8). As a result, four key DE-FRGs (CXCL2, HMOX1, IL-6 and SLC7A5) and biological pathway [hypoxia-inducible factor 1 (HIF-1) signaling pathway] associated with ferroptosis in neutrophilic asthma were identified by the bioinformatics analysis combined with experimental validation. The upstream regulatory network of key DE-FRGs and target drugs were predicted and the molecular docking results from screened 37 potential therapeutic drugs revealed that the 13 small-molecule drugs exhibited a higher stable binding to the primary proteins of key DE-FRGs. The results suggested that four key DE-FRGs and the HIF-1α/heme oxygenase 1 pathway associated with ferroptosis have potential as novel markers or targets for the diagnosis or treatment of neutrophilic asthma.

10.
Exp Ther Med ; 28(6): 432, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39347497

RESUMO

The objective of the present study was to perform RNA sequencing and immunohistochemical analysis on skin specimens obtained from healthy individuals and individuals afflicted with prolonged skin infections. Bioinformatics methodologies were used to scrutinize the RNA sequencing data with the intention of pinpointing distinctive gene signatures associated with chronic skin infections. Skin tissue samples were collected from 11 individuals (4 subjects healthy and 7 patients with chronic skin infections) at the Affiliated Hospital of Southwest Medical University (Luzhou, China). The iDEP tool identified differentially expressed genes (DEGs) with log2 (fold change) ≥2 and q-value ≤0.01. Functional enrichment analysis using Gene Ontology and KEGG databases via the oebiotech online tool was then performed to determine the biological functions and pathways related to these DEGs. A protein-protein interaction network of DEGs identified HIF1A as a potential key gene. Subsequent immunohistochemistry analyses were performed on the samples to assess any variations in HIF1A expression. A total of 900 DEGs, 365 upregulated and 535 downregulated, were observed between the normal and chronic infection groups. The identified DEGs were found to serve a role in various biological processes, including 'hypoxia adaptation', 'angiogenesis', 'cell adhesion' and 'regulation of positive cell migration'. Additionally, these genes were revealed to be involved in the 'TGF-ß', 'PI3K-Akt' and 'IL-17' signaling pathways. HIF1A and nine other genes were identified as central nodes in the PPI network. HIF1A expression was higher in chronically infected skin samples than in healthy samples, indicating its potential as a novel research target.

11.
Cell Mol Life Sci ; 81(1): 397, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261351

RESUMO

Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.


Assuntos
Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Fator 1 Induzível por Hipóxia , Mucosa Intestinal , Transdução de Sinais , Vitamina B 12 , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina B 12/farmacologia , Vitamina B 12/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Fator 1 Induzível por Hipóxia/metabolismo , Colite/metabolismo , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Colite/tratamento farmacológico , Disbiose/microbiologia , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Drosophila/metabolismo
12.
Phytomedicine ; 135: 156037, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39303508

RESUMO

BACKGROUND: Microcirculatory problems in the intestinal mucosa are the primary cause of ulcerative colitis (UC). Although UC is commonly treated with paeoniae radix alba (PRA), its exact mechanism of action is unclear. PURPOSE: To examine how PRA affects UC induced by dextran sulfate sodium (DSS) and the mechanism of its effects. METHODS: The primary active components of PRA were identified using high-performance liquid chromatography (HPLC), and network pharmacology techniques were used to predict the possible targets of action and signaling pathways in treatment for UC. A model of UC was established in vivo using rats, and a PRA intervention was performed. The amounts of cytokines in the colonic tissues and serum were measured using enzyme-linked immunosorbent assay (ELISA). The permeability of the intestinal mucosa was measured using a fluorescein isothiocyanate (FITC)-dextran assay and western blot. A PeriCam PSI system was used to view the microcirculation of the intestinal mucosa, and immunohistochemistry and immunofluorescence stains were used to detect angiogenesis. An electron microscope was used to observe the damage to the endothelium of the colon. Western blot and immunohistochemistry analyses were used to evaluate the protein expression of hypoxia-inducible factor-1 alpha (HIF-1α) in colon tissues, and qRT-PCR was used to assess the lncRNA expression of MALAT1. RESULTS: HPLC identified 10 main active components of PRA, and the network pharmacology results showed that the treatment of UC with PRA was associated with the HIF-1 signaling pathway. The results of animal experiments revealed that PRA significantly improved the pathological damage to the colon and the microcirculatory issues in the intestinal mucosa. PRA also inhibited colonic endothelial cell damage and angiogenesis, which may be related to the inhibition of the increased expression of lncRNA MALAT1 and HIF-1α in colon tissues. CONCLUSIONS: The anti-UC effect of PRA by improving intestinal mucosal microcirculatory disorders was first reported in this study. PRA deactivated the lncRNA MALAT1/HIF-1α pathway, inhibited endothelial angiogenesis, restored intestinal mucosal microvascular homeostasis, improved microcirculatory disorders, and alleviated the symptoms of DSS-induced UC in rats.

13.
Nanotoxicology ; : 1-17, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295432

RESUMO

We have previously demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused extensive interstitial fibrosis and inflammatory cell infiltration in mouse lungs. However, the underlying mechanisms of Nano-Co-induced pulmonary fibrosis remain unclear. In this study, we investigated the role of high-mobility group box 1 (HMGB1) in the epithelial cell-fibroblast crosstalk in Nano-Co-induced pulmonary fibrosis. Our results showed that Nano-Co exposure caused remarkable production and release of HMGB1, as well as nuclear accumulation of HIF-1α in human bronchial epithelial cells (BEAS-2B) in a dose- and a time-dependent manner. Pretreatment with CAY10585, an inhibitor against HIF-1α, significantly blocked the overexpression of HMGB1 in cell lysate and the release of HMGB1 in the supernatant of BEAS-2B cells induced by Nano-Co exposure, indicating that Nano-Co exposure induces HIF-1α-dependent HMGB1 overexpression and release. In addition, treatment of lung fibroblasts (MRC-5) with conditioned media from Nano-Co-exposed BEAS-2B cells caused increased RAGE expression, MAPK signaling activation, and enhanced expression of fibrosis-associated proteins, such as fibronectin, collagen 1, and α-SMA. However, conditioned media from Nano-Co-exposed BEAS-2B cells with HMGB1 knockdown had no effects on the activation of MRC-5 fibroblasts. Finally, inhibition of ERK1/2, p38, and JNK all abolished MRC-5 activation induced by conditioned media from Nano-Co-exposed BEAS-2B cells, suggesting that MAPK signaling might be a key downstream signal of HMGB1/RAGE to promote MRC-5 fibroblast activation. These findings have important implications for understanding the pro-fibrotic potential of Nano-Co.

14.
Adv Exp Med Biol ; 1460: 273-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287855

RESUMO

Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1ß) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.


Assuntos
Adipócitos , Macrófagos , Obesidade , Obesidade/metabolismo , Obesidade/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Adipócitos/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular
15.
Adv Sci (Weinh) ; : e2408013, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308185

RESUMO

HIF-1α (hypoxia induced factor-1α), a vital protective signal against hypoxia, has a short lifetime after myocardial infarction (MI). Increasing HIF-1α stability by inhibiting its hydroxylation with prolyl hydroxylases inhibitors such as DPCA (1,4-dihydrophenonthrolin-4-one-3-carboxylic acid) presents positive results. However, the optimal inhibitor administration profile for MI treatment is still unexplored. Here, injectable, thermosensitive hydrogels with programmable DPCA release are designed and synthesized. Hydrogel degradation and slow DPCA release are coupled to form a feedback loop by attaching pendant DPCA to polymer backbone, which serve as additional crosslinking points through π-π and hydrophobic interactions. Pendant carboxyl groups are added to the copolymer to accelerate DPCA release. Burst release in the acute phase for myocardial protection and extended near zero-order release across the inflammatory and fibrotic phases with different rates are achieved. All DPCA-releasing hydrogels upregulate HIF-1α, decrease apoptosis, promote angiogenesis, and stimulate cardiomyocyte proliferation, leading to preserved cardiac function and ventricular geometry. Faster hydrogel degradation induced by faster DPCA release results in a HIF-1α expression eight times of healthy control and better therapeutic effect in MI treatment. This research demonstrates the value of precise regulation of HIF-1α expression in treating MI and other relevant diseases and provides an implantable device-based modulation strategy.

16.
Int J Hyperthermia ; 41(1): 2401417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39255969

RESUMO

OBJECTIVE: In this study, we established a Sprague-Dawley rat model of vulvar squamous intraepithelial lesions and investigated the impact of focused ultrasound on the expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and mutant type p53 (mtp53) in the vulvar skin of rats with low-grade squamous intraepithelial lesions (LSIL). MATERIALS AND METHODS: The vulvar skin of 60 rats was treated with dimethylbenzanthracene (DMBA) and mechanical irritation three times a week for 14 weeks. Rats with LSIL were randomly allocated into the experimental group or the control group. The experimental group was treated with focused ultrasound, while the control group received sham treatment. RESULTS: After 14 weeks treatment of DMBA combined with mechanical irritation, LSIL were observed in 44 (73.33%) rats, and high-grade squamous intraepithelial lesions (HSIL) were observed in 14 (23.33%) rats. 90.91% (20/22) of rats showed normal pathology and 9.09% (2/22) of rats exhibited LSIL in the experimental group at four weeks after focused ultrasound treatment. 22.73% (5/22) of rats exhibited LSIL, 77.27% (17/22) of rats progressed to HSIL in the control group. Compared with the control-group rats, the levels of HIF-1α, VEGF and mtp53 were significantly decreased in experimental-group rats (p < 0.05). CONCLUSIONS: These results indicate that DMBA combined with mechanical irritation can induce vulvar squamous intraepithelial lesion in SD rats. Focused ultrasound can treat LSIL safely and effectively, prevent the progression of vulvar lesions, and improve the microenvironment of vulvar tissues by decreasing the localized expression of HIF-1α, VEGF, and mtp53 in rats.


Assuntos
Ratos Sprague-Dawley , Lesões Intraepiteliais Escamosas , Animais , Feminino , Ratos , Lesões Intraepiteliais Escamosas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Vulvares/patologia , Neoplasias Vulvares/terapia , Terapia por Ultrassom/métodos , Proteína Supressora de Tumor p53/metabolismo
17.
Clin Rheumatol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256280

RESUMO

BACKGROUND: Gouty arthritis is a metabolic disease characterized by the deposition of monosodium urate crystals in the joints, which triggers the release of interleukin-1ß (IL-ß) by activating the NLRP3 inflammasome. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor involved in IL-ß production and as a regulator of NLRP3. OBJECTIVES: The aims were to analyze the association of HIF1A rs11549465, rs11549467, and rs2057482 variants in patients with gouty arthritis, and to evaluate the correlation between urate and HIF-1α levels according to the associated genotypes. METHODS: Cases and controls were genotyped using TaqMan probes, and urate and HIF-1α levels were quantified. Data were analyzed using SPSS v21 software and P-values < 0.05 were considered statistically significant. RESULTS: Urate and HIF-1α levels were higher in patients than in controls (P < 0.05). Under the three inheritance models (codominant, dominant, and recessive), the AA genotype of the rs11549467 variant was associated with gout risk (OR = 5.74, P = 0.009, OR = 3.33, P = 0.024, and OR = 9.09, P = 0.003, respectively). There were significant differences in the distribution of serum levels of both HIF-1α (P < 0.0001) and urate (P = 0.016) according to the genotypes of the rs11549467 variant. CONCLUSION: These results suggest that the HIF1A rs11549467 variant may play a key role in the pathogenesis of gouty arthritis. Key Points • The pathogenesis of gouty arthritis involves the HIF1A gene. • In patients with gout, the AA genotype of the rs11549467 (HIF1A) variant is associated with increased serum levels of urate and HIF-1α. • HIF-1α is involved in the regulation of IL-1ß and NLRP3.

18.
Ocul Immunol Inflamm ; : 1-5, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269633

RESUMO

BACKGROUND: To investigate the association of hypoxia-inducible factor-1α (HIF-1α), Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) gene polymorphisms with idiopathic scleritis in a Chinese Han population. METHODS: Ten single nucleotide polymorphisms (SNP) of HIF-1α, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 3 (STAT3), signal transducer and activator of transcription 4 (STAT4), and retinoid-related orphan nuclear receptors-γ (ROR-γ) were selected for this study. A total of 496 idiopathic scleritis patients and 1009 controls were genotyped by the MassARRAY platform and iPLEX Gold Genotyping Assay. The allele and genotype frequencies were analyzed by Chi-square test and Fisher's exact test. Stratified analyses were performed based on gender and anatomic locations of idiopathic scleritis. RESULTS: The frequencies of CC genotype (p = 6.18 × 10-4, Pc = 0.04, OR = 0.67,95%CI = 0.53-0.84) and C allele (p = 7.08 × 10-4, Pc = 0.04, OR = 0.71,95%CI = 0.58-0.87) for HIF-1α/rs2057482 were found significantly lower in idiopathic scleritis patients when compared to healthy controls. Stratified analysis depending on gender showed significant decreased frequencies of CC genotype (CC: p = 4.04 × 10-4, Pc = 0.02, OR = 0.54, 95%CI = 0.39-0.76) and C allele (C: p = 1.62 × 10-4, Pc = 0.01, OR = 0.58, 95%CI = 0.44-0.77) in male patients. Stratification analysis of rs2057482 according to location of scleritis did not show any significant difference between three subgroups and healthy controls. CONCLUSION: This study showed association between polymorphism of HIF-1α/rs2057482 and susceptibility to idiopathic scleritis in Han Chinese male patients.

19.
Sports Med Health Sci ; 6(3): 221-231, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39234483

RESUMO

Cardiac injury and sustained cardiovascular abnormalities in long-COVID syndrome, i.e. post-acute sequelae of coronavirus disease 2019 (COVID-19) have emerged as a debilitating health burden that has posed challenges for management of pre-existing cardiovascular conditions and other associated chronic comorbidities in the most vulnerable group of patients recovered from acute COVID-19. A clear and evidence-based guideline for treating cardiac issues of long-COVID syndrome is still lacking. In this review, we have summarized the common cardiac symptoms reported in the months after acute COVID-19 illness and further evaluated the possible pathogenic factors underlying the pathophysiology process of long-COVID. The mechanistic understanding of how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) damages the heart and vasculatures is critical in developing targeted therapy and preventive measures for limiting the viral attacks. Despite the currently available therapeutic interventions, a considerable portion of patients recovered from severe COVID-19 have reported a reduced functional reserve due to deconditioning. Therefore, a rigorous and comprehensive cardiac rehabilitation program with individualized exercise protocols would be instrumental for the patients with long-COVID to regain the physical fitness levels comparable to their pre-illness baseline.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39284778

RESUMO

BACKGROUND: Idiopathic inflammatory myopathy (IIM) is a systemic autoimmune disease characterized by skeletal muscle involvement. This study aimed to investigate the role of adenosine receptor signalling pathways in the development of experimental autoimmune myositis (EAM). METHODS: An ecto-5'-nucleotidase (CD73) inhibitor, adenosine receptor agonists, a hypoxia-inducible factor-1α (HIF-1α) inhibitor or a vehicle were administered to control and EAM mice. Murine splenic CD4+ or regulatory T cells (Tregs) were isolated using magnetic beads and subsequently stimulated with an adenosine A2B receptor agonist, a HIF-1α inhibitor, or vehicle in vitro. In cross-sectional studies, we collected 64 serum samples (69% female, 49 ± 9 years), 63 peripheral blood samples (70% female, 50 ± 11 years), and 34 skeletal muscle samples (71% female, 63 ± 6 years) from patients with IIM. Additionally, 35 serum samples and 30 peripheral blood samples were obtained from age- and sex-matched healthy controls, and six quadriceps muscle samples were collected from patients with osteoarthritis to serve as the normal group. RESULTS: Patients with IIM exhibited increased CD73 [dermatomyositis (DM), polymyositis (PM): P < 0.01; immune-mediated necrotizing myopathy (IMNM): P < 0.0001] and adenosine deaminase (ADA) expression (DM: P < 0.001; PM, IMNM: P < 0.0001) in the skeletal muscles, and serum ADA levels [56.7 (95% CI: 53.7, 58.7) vs. 198.8 (95% CI: 186.2, 237.3) ng/µL, P < 0.0001]. Intervention with a CD73 inhibitor exacerbated (P = 0.0461), whereas adenosine receptor agonists (A1: P = 0.0009; A2B: P < 0.0001; A3: P = 0.0001) and the HIF-1α inhibitor (P = 0.0044) alleviated skeletal muscle injury in EAM mice. Elevated expression of programmed cell death protein-1 (PD1: P = 0.0023) and T-cell immunoglobulin and mucin-domain containing-3 (TIM3: P < 0.0001) in skeletal muscles of patients with IIM were correlated with creatine kinase levels (PD1, r = 0.7072, P < 0.0001; TIM3, r = 0.4808, P = 0.0046). PD1+CD4+ (r = 0.3243, P = 0.0115) and PD1+CD8+ (r = 0.3959, P = 0.0017) T cells were correlated with Myositis Disease Activity Assessment Visual Analogue Scale scores (muscle) in IIM. The exhausted Tregs were identified in the skeletal muscles of patients with IIM. Activation of the A2B adenosine receptor downregulated HIF-1α (protein or mRNA level, P < 0.01), resulting in decreased T helper cell 17 (Th17) (13.58% vs. 5.43%, P = 0.0201) and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3)+ Th17 (16.32% vs. 6.73%, P = 0.0029), decreased exhausted Tregs (PD1+ Tregs: 53.55% vs. 40.28%, P = 0.0005; TIM3+ Tregs: 3.93% vs. 3.11%, P = 0.0029), and increased Tregs (0.45% vs. 2.89%, P = 0.0006) in EAM mice. CONCLUSIONS: The exhausted T cells may be pathogenic in IIM, and the activation of adenosine A2B receptor signalling pathway can regulate Th17/Treg balance and inhibit Tregs exhaustion, thereby slowing EAM disease progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA