Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1303611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440734

RESUMO

Introduction: Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE). This study aimed to identify LN specific-genes and potential therapeutic targets. Methods: We performed high-throughput transcriptome sequencing on peripheral blood mononuclear cells (PBMCs) from LN patients. Healthy individuals and SLE patients without LN were used as controls. To validate the sequencing results, qRT-PCR was performed for 5 upregulated and 5 downregulated genes. Furthermore, the effect of the TNFRSF17-targeting drug IBI379 on patient plasma cells and B cells was evaluated by flow cytometry. Results: Our analysis identified 1493 and 205 differential genes in the LN group compared to the control and SLE without LN groups respectively, with 70 genes common to both sets, marking them as LN-specific. These LN-specific genes were significantly enriched in the 'regulation of biological quality' GO term and the cell cycle pathway. Notably, several genes including TNFRSF17 were significantly overexpressed in the kidneys of both LN patients and NZB/W mice. TNFRSF17 levels correlated positively with urinary protein levels, and negatively with complement C3 and C4 levels in LN patients. The TNFRSF17-targeting drug IBI379 effectively induced apoptosis in patient plasma cells without significantly affecting B cells. Discussion: Our findings suggest that TNFRSF17 could serve as a potential therapeutic target for LN. Moreover, IBI379 is presented as a promising treatment option for LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Humanos , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/genética , Leucócitos Mononucleares , Imunoterapia , Sequenciamento de Nucleotídeos em Larga Escala
2.
Cancer Lett ; 536: 215663, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35381307

RESUMO

Multiple myeloma (MM) is a hematological malignancy that results from the malignant proliferation of plasma cells in the bone marrow. B cell maturation antigen (BCMA) is highly selectively expressed in malignant plasma cells and is a novel therapeutic target for MM. Here, we developed a bispecific T cell engager, IBI379, that targets BCMA and CD3, and investigated its antitumor efficacy against MM. IBI379 showed strong binding affinity with both BCMA and CD3, which triggered T cell activation, proliferation, and cytokine release. An in vitro study demonstrated that IBI379 induced the lysis of MM cells expressing differing levels of BCMA on the cell surface. Administration of IBI379 in H929 or Daudi-BCMA cell xenograft mouse models significantly inhibited tumor growth without inducing body weight loss. The mechanism of action study revealed the accumulation of CD4+CD8+ T cells and granzyme B-positive T cells in tumors that were treated with IBI379. Moreover, administration of low dose of IBI379 in cynomolgus monkeys was well-tolerated and induced the depletion of BCMA+ B cells and a mild transient increase of cytokines. Collectively, these results demonstrate that IBI379 is a highly potent therapeutic strategy for depleting BCMA-positive B cells and is a promising approach for the treatment of MM.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B/metabolismo , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/uso terapêutico , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA