Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 175: 113345, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35151077

RESUMO

A multi-index approach (larval lenghthening and malformations, developmental disruption, and genotoxicity) was applied using sea-urchin embryos as test-organisms. PAH levels measured in the under-ice weathered aqueous fraction (UIWAF) were lower than in the low-energy water accommodated fraction (LEWAF) and similar amongst UIWAFs of different oils. UIWAFs and LEWAFs caused toxic effects, more markedly in UIWAFs, that could not be attributed to measured individual PAHs or to their mixture. Conversely, UIWAF was less genotoxic than LEWAF, most likely because naphthalene concentrations were also lower. In agreement, NAN LEWAF, the most genotoxic, exhibited the highest naphthalene levels. Dispersant addition produced less consistent changes in PAH levels and embryo toxicity in UIWAFs than in LEWAFs, and did not modify LEWAF genotoxicity. Overall, under ice weathering resulted in lowered waterborne PAHs and genotoxicity but augmented embryo toxicity, not modified by dispersant application.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Gelo , Óleos , Petróleo/toxicidade , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ouriços-do-Mar , Poluentes Químicos da Água/toxicidade
2.
Mar Pollut Bull ; 172: 112922, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34523425

RESUMO

This study deals with the toxicity assessment of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas (NNA: Naphthenic North-Atlantic crude oil; MGO: Marine Gas Oil; IFO: Intermediate Fuel Oil 180), alone or in combination with a third-generation dispersant (Finasol OSR52®). Early life stages of sea urchin, Paracentrotus lividus, were selected for toxicity testing of oil low-energy water accommodated fractions. A multi-index approach, including larval size increase and malformation, and developmental disruption as endpoints, was sensitive to discriminate from slight to severe toxicity caused by the tested aqueous fractions. IFO (heavy bunker oil) was more toxic than NNA (light crude oil), with MGO (light bunker oil) in between. The dispersant was toxic and further on it enhanced oil toxicity. Toxic units revealed that identified PAHs were not the main cause for toxicity, most likely exerted by individual or combined toxic action of non-measured compounds.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Óleos , Petróleo/toxicidade , Estudos Prospectivos , Ouriços-do-Mar , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA