Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 11(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744065

RESUMO

Dendritic cells (DCs) express Fcγ receptors (FcγRs) for the binding immune complexes (ICs) consisting of IgG and antigens (Ags). IC⁻FcγR interactions have been demonstrated to enhance activation and antigen-presenting functions of DCs. Utilizing Friend virus (FV), an oncogenic mouse retrovirus, we investigated the effect of IgG-opsonization of retroviral particles on the infection of DCs and the subsequent presentation of viral antigens by DCs to virus-specific CD8 T cells. We found that opsonization by virus-specific non-neutralizing IgG abrogated DC infection and as a consequence significantly reduced the capacity of DCs to activate virus-specific CD8 T cells. Effects of IgG-opsonization were mediated by the high-affinity FcγR type I, CD64, expressed on DCs. Our results suggest that different opsonization patterns on the retroviral surface modulate infection and antigen-presenting functions of DCs, whereby, in contrast to complement, IgG reduces the capacity of DCs to activate cytotoxic T cell (CTL) responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vírus da Leucemia Murina de Friend/imunologia , Ativação Linfocitária , Receptores de IgG/imunologia , Animais , Apresentação de Antígeno , Complexo Antígeno-Anticorpo/imunologia , Células Dendríticas/virologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de IgG/genética
2.
Immunol Cell Biol ; 97(6): 538-551, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30695101

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant human T-cell subset with antimicrobial properties. They can respond to bacteria presented via antigen-presenting cells (APCs) such as macrophages, which present bacterially derived ligands from the riboflavin synthesis pathway on MR1. Moreover, MAIT cells are also highly responsive to cytokines which enhance and even substitute for T-cell receptor-mediated signaling. The mechanisms leading to an efficient presentation of bacteria to MAIT cells by APCs have not been fully elucidated. Here, we showed that the monocytic cell line THP-1 and B cells activated MAIT cells differentially in response to Escherichia coli. THP-1 cells were generally more potent in inducing IFNγ and IFNγ/TNF production by MAIT cells. Furthermore, THP-1, but not B, cells produced TNF upon bacterial stimulation, which in turn supported IFNγ production by MAIT cells. Finally, we addressed the role of antibody-dependent opsonization of bacteria in the activation of MAIT cells using in vitro models. We found that opsonization had a substantial impact on downstream MAIT cell activation by monocytes. This was associated with enhanced activation of monocytes and increased TNF release. Importantly, this TNF acted in concert with other cytokines to drive MAIT cell activation. These data indicate both a significant interaction between adaptive and innate immunity in the response to bacteria, and an important role for TNF in MAIT cell triggering.


Assuntos
Linfócitos B/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Monócitos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Imunidade Adaptativa , Anticorpos Antibacterianos/metabolismo , Apresentação de Antígeno , Humanos , Imunidade Inata , Interferon gama/metabolismo , Ativação Linfocitária , Proteínas Opsonizantes/metabolismo , Fagocitose , Transdução de Sinais , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA