Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103306, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39133964

RESUMO

In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.


Assuntos
Condrócitos , Peroxidação de Lipídeos , Mitocôndrias , Oxirredução , Estresse Oxidativo , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cartilagem Articular/metabolismo , Camundongos , Células Cultivadas
2.
Mutat Res Rev Mutat Res ; 782: 108283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31843137

RESUMO

Immuno-spin trapping detection of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrrloine N-oxide (DMPO) has made important contributions towards the understanding of DNA radicalization and genotoxicity at sites of inflammation. At sites of inflammation, one-electron oxidants and chloramines decay induce oxidation of genomic DNA, genotoxicity and cell transformation. Radicalization of DNA can result in either single- or double-strand breaks, or end-oxidation products at the sugar or bases. If not repaired, these modifications can lead to mutations and cell transformation. If trapped with DMPO, DNA-centered radical decay and subsequent formation of end-oxidation products are blocked. Herein we discuss recent literature regarding the use of immuno-spin trapping with DMPO to study DNA-centered radicals and their involvement in genotoxicity. This technique has shown the critical role of DNA radicalization in 8-oxo-dG formation and DNA strand breaks in isolated DNA, cells and in whole animals. Combination of technologies, including immuno-spin trapping and powerful chromatographic and sequencing techniques are needed to move forward the field towards the detection of specific genes that are susceptible to oxidative damage in cells located at sites of inflammation. This is important in order to provide novel information about genotoxicity mechanisms, as well as therapeutic possibilities of DMPO or its derivatives for preventing DNA-centered radical-mediated carcinogenesis.


Assuntos
Óxidos N-Cíclicos/efeitos adversos , Dano ao DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Radicais Livres/química , Mutagênicos/efeitos adversos , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/química , Animais , Inflamação/genética , Detecção de Spin/métodos
3.
Front Immunol ; 9: 938, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867936

RESUMO

Recent studies suggest both beneficial and detrimental role of increased reactive oxygen species and oxidative stress in heart failure (HF). However, it is not clear at which stage oxidative stress and oxidative modifications occur in the endothelium in relation to cardiomyocytes in non-ischemic HF. Furthermore, most methods used to date to study oxidative stress are either non-specific or require tissue homogenization. In this study, we used immuno-spin trapping (IST) technique with fluorescent microscopy-based detection of DMPO nitrone adducts to localize and quantify oxidative modifications of the hearts from Tgαq*44 mice; a murine model of HF driven by cardiomyocyte-specific overexpression of Gαq* protein. Tgαq*44 mice and age-matched FVB controls at early, transition, and late stages of HF progression were injected with DMPO in vivo and analyzed ex vivo for DMPO nitrone adducts signals. Progressive oxidative modifications in cardiomyocytes, as evidenced by the elevation of DMPO nitrone adducts, were detected in hearts from 10- to 16-month-old, but not in 8-month-old Tgαq*44 mice, as compared with age-matched FVB mice. The DMPO nitrone adducts were detected in left and right ventricle, septum, and papillary muscle. Surprisingly, significant elevation of DMPO nitrone adducts was also present in the coronary endothelium both in large arteries and in microcirculation simultaneously, as in cardiomyocytes, starting from 10-month-old Tgαq*44 mice. On the other hand, superoxide production in heart homogenates was elevated already in 6-month-old Tgαq*44 mice and progressively increased to high levels in 14-month-old Tgαq*44 mice, while the enzymatic activity of catalase, glutathione reductase, and glutathione peroxidase was all elevated as early as in 4-month-old Tgαq*44 mice and stayed at a similar level in 14-month-old Tgαq*44. In summary, this study demonstrates that IST represents a unique method that allows to quantify oxidative modifications in cardiomyocytes and coronary endothelium in the heart. In Tgαq*44 mice with slowly developing HF, driven by cardiomyocyte-specific overexpression of Gαq* protein, an increase in superoxide production, despite compensatory activation of antioxidative mechanisms, results in the development of oxidative modifications not only in cardiomyocytes but also in coronary endothelium, at the transition phase of HF, before the end-stage disease.


Assuntos
Endotélio Vascular/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Imunoensaio , Miócitos Cardíacos/metabolismo , Oxirredução , Detecção de Spin , Animais , Antioxidantes/metabolismo , Biomarcadores , Vasos Coronários/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Insuficiência Cardíaca/diagnóstico , Imunoensaio/métodos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Detecção de Spin/métodos , Superóxidos/metabolismo
4.
Free Radic Res ; 52(4): 465-479, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29546780

RESUMO

Reactive oxygen species (ROS) are important mediators of the cytotoxicity induced by the direct reaction of ionising radiation (IR) with all critical cellular components, such as proteins, lipids, and nucleic acids. The derived oxidative damage may propagate in exposed tissues in a dose- and spatiotemporal dependent manner to other cell compartments, affecting intracellular signalling, and cell fate. To understand how cell damage is induced, we studied the oxidative events occurring immediately after cell irradiation by analysing the fate of IR-derived ROS, the intracellular oxidative damage, and the modification of redox environment accumulating in Chinese hamster ovary (CHO) within 1 h after cell irradiation (dose range 0-10 Gy). By using the immuno-spin trapping technique (IST), spectrophotometric methods, and electron paramagnetic resonance (EPR) spectroscopy, we showed that IR-derived ROS (i) induced an IST-detectable, antioxidant-inhibitable one-electron oxidation of specific intracellular proteins; (ii) altered the glutathione (GSH) content (which was found to increase below 2 Gy, and decrease at higher doses, leading to a redox imbalance); (iii) decreased glutathione peroxidase and glutaredoxin activity; (iv) modified neither glutathione reductase nor thioredoxin reductase activity; (v) were detected by spin trapping technique, but adduct intensity decreased due to cell competition for ROS; and (vi) induced no EPR-detectable radicals assignable to oxidised cellular components. In conclusion, our results showed that IR generated an early high oxidising potential (protein radical intermediates, redox imbalance, modified redox enzyme activity) in irradiated cells potentially able to propagate the damage and induce oxidative modification of secondary targets.


Assuntos
Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Animais , Células CHO , Cricetulus , Glutarredoxinas/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Oxirredução
5.
Antioxid Redox Signal ; 28(15): 1404-1415, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29084431

RESUMO

SIGNIFICANCE: In vivo free radical imaging in preclinical models of disease has become a reality. Free radicals have traditionally been characterized by electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. The disadvantage of the ESR/EPR approach is that spin adducts are short-lived due to biological reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an antibody that recognizes macromolecular 5,5-dimethyl-pyrroline-N-oxide (DMPO) spin adducts (anti-DMPO antibody), regardless of the oxidative/reductive state of trapped radical adducts. Recent Advances: The IST approach has been extended to an in vivo application that combines IST with molecular magnetic resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a spin-trapping agent, DMPO, to trap free radicals in disease models, and administration of an mMRI probe, an anti-DMPO probe, which combines an antibody against DMPO-radical adducts and an MRI contrast agent, resulting in targeted free radical adduct detection. CRITICAL ISSUES: The combined IST-mMRI approach has been used in several rodent disease models, including diabetes, amyotrophic lateral sclerosis (ALS), gliomas, and septic encephalopathy. The advantage of this approach is that heterogeneous levels of trapped free radicals can be detected directly in vivo and in situ to pin point where free radicals are formed in different tissues. FUTURE DIRECTIONS: The approach can also be used to assess therapeutic agents that are either free radical scavengers or generate free radicals. Smaller probe constructs and radical identification approaches are being considered. The focus of this review is on the different applications that have been studied, advantages and limitations, and future directions. Antioxid. Redox Signal. 28, 1404-1415.


Assuntos
Radicais Livres/química , Substâncias Macromoleculares/química , Animais , Anticorpos/química , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imageamento por Ressonância Magnética/métodos , Oxirredução , Marcadores de Spin , Detecção de Spin/métodos
6.
Mol Neurodegener ; 11(1): 70, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27884192

RESUMO

BACKGROUND: The pathological features of Parkinson's disease (PD) include an abnormal accumulation of α-synuclein in the surviving dopaminergic neurons. Though PD is multifactorial, several epidemiological reports show an increased incidence of PD with co-exposure to pesticides such as Maneb and paraquat (MP). In pesticide-related PD, mitochondrial dysfunction and α-synuclein oligomers have been strongly implicated, but the link between the two has not yet been understood. Similarly, the biological effects of α-synuclein or its radical chemistry in PD is largely unknown. Mitochondrial dysfunction during PD pathogenesis leads to release of cytochrome c in the cytosol. Once in the cytosol, cytochrome c has one of two fates: It either binds to apaf1 and initiates apoptosis or can act as a peroxidase. We hypothesized that as a peroxidase, cytochrome c leaked out from mitochondria can form radicals on α-synuclein and initiate its oligomerization. METHOD: Samples from controls, and MP co-exposed wild-type and α-synuclein knockout mice were studied using immuno-spin trapping, confocal microscopy, immunohistochemistry, and microarray experiments. RESULTS: Experiments with MP co-exposed mice showed cytochrome c release in cytosol and its co-localization with α-synuclein. Subsequently, we used immuno-spin trapping method to detect the formation of α-synuclein radical in samples from an in vitro reaction mixture consisting of cytochrome c, α-synuclein, and hydrogen peroxide. These experiments indicated that cytochrome c plays a role in α-synuclein radical formation and oligomerization. Experiments with MP co-exposed α-synuclein knockout mice, in which cytochrome c-α synuclein co-localization and interaction cannot occur, mice showed diminished protein radical formation and neuronal death, compared to wild-type MP co-exposed mice. Microarray data from MP co-exposed wild-type and α-synuclein knockout mice further showed that the absence of α-synuclein per se or its co-localization with cytochrome c confers protection from MP co-exposure, as several important pathways were unaffected in α-synuclein knockout mice. CONCLUSIONS: Altogether, these results show that peroxidase activity of cytochrome c contributes to α-synuclein radical formation and oligomerization, and that α-synuclein, through its co-localization with cytochrome c or on its own, affects several biological pathways which contribute to increased neuronal death in an MP-induced model of PD.


Assuntos
Citocromos c/metabolismo , Radicais Livres/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/metabolismo , Animais , Morte Celular , Imuno-Histoquímica , Masculino , Maneb/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/fisiologia , Paraquat/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Praguicidas/toxicidade
7.
Redox Biol ; 8: 422-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203617

RESUMO

The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology.


Assuntos
Radicais Livres/metabolismo , Organelas/metabolismo , Detecção de Spin/métodos , Adutos de DNA/química , Adutos de DNA/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/isolamento & purificação , Óxidos de Nitrogênio/metabolismo , Organelas/ultraestrutura , Proteínas/química , Proteínas/metabolismo
8.
Mol Neurobiol ; 53(6): 4094-4125, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26198567

RESUMO

The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction.


Assuntos
Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto , Humanos
9.
Mol Neurobiol ; 53(5): 2983-2994, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25952542

RESUMO

Parkinson's disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb- and paraquat-coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox(-/-) and iNOS(-/-)) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400 W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb- and paraquat-coexposed mice.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Óxidos N-Cíclicos/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Injeções Intraperitoneais , Masculino , Maneb , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Modelos Biológicos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Paraquat , Ácido Peroxinitroso/metabolismo , Marcadores de Spin , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Curr Protoc Cytom ; 74: 12.42.1-12.42.11, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26423693

RESUMO

A plethora of disease processes are associated with elevated reactive species formation and allied reactions with biomolecules that alter cell signaling, induce overt damage, and promote dysfunction of tissues. Unfortunately, effective detection of reactive species in tissues is wrought with issues that significantly limit capacity for validating species identity, establishing accurate concentrations, and identifying anatomic sites of production. These shortcomings reveal the pressing need for new approaches to more precisely assess reactive species generation in vivo. Herein, we describe an in vivo immuno-spin trapping method for indirectly assessing oxidant levels by detecting free radicals resulting from reaction of oxidants with biomolecules to form stable, immunologically detectable nitrone-biomolecular adducts. This process couples the reactivity and sensitivity of an electron paramagnetic resonance spin trap with the resolution of confocal imaging to visualize the extent of cell and tissue oxidation and anatomic sites of production by detecting resultant free radical formation.


Assuntos
Óxidos N-Cíclicos/química , Radicais Livres/metabolismo , Óxidos de Nitrogênio/química , Estresse Oxidativo , Marcadores de Spin , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Obesos
11.
Free Radic Biol Med ; 87: 157-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119786

RESUMO

Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants.


Assuntos
Antioxidantes/administração & dosagem , Benzenossulfonatos/administração & dosagem , Radicais Livres/metabolismo , Glioma/tratamento farmacológico , Iminas/administração & dosagem , Animais , Meios de Contraste/química , Óxidos N-Cíclicos/química , Modelos Animais de Doenças , Radicais Livres/química , Glioma/metabolismo , Glioma/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Malondialdeído/química , Malondialdeído/metabolismo , Ratos , Detecção de Spin
12.
Free Radic Res ; 49(9): 1140-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25968951

RESUMO

Free radicals contribute to the pathogenesis of diabetic cardiomyopathy. We present a method for in vivo observation of free radical events within murine diabetic cardiomyopathy. This study reports on in vivo imaging of protein/lipid radicals using molecular MRI (mMRI) and immuno-spin trapping (IST) in diabetic cardiac muscle. To detect free radicals in diabetic cardiomyopathy, streptozotocin (STZ)-exposed mice were given 5,5-dimethyl-pyrroline-N-oxide (DMPO) and administered an anti-DMPO probe (biotin-anti-DMPO antibody-albumin-Gd-DTPA). For controls, non-diabetic mice were given DMPO (non-disease control), and administered an anti-DMPO probe; or diabetic mice were given DMPO but administered a non-specific IgG contrast agent instead of the anti-DMPO probe. DMPO administration started at 7 weeks following STZ treatment for 5 days, and the anti-DMPO probe was administered at 8 weeks for MRI detection. MRI was used to detect a significant increase (p < 0.001) in MRI signal intensity (SI) from anti-DMPO nitrone adducts in diabetic murine left-ventricular (LV) cardiac tissue, compared to controls. Regional increases in MR SI in the LV were found in the apical and upper-left areas (p < 0.01 for both), compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised cardiac tissues, which indicated elevated fluorescence only in cardiac muscle of mice administered the anti-DMPO probe. Oxidized lipids and proteins were also found to be significantly elevated (p < 0.05 for both) in diabetic cardiac muscle compared to controls. It can be concluded that diabetic mice have more heterogeneously distributed radicals in cardiac tissue than non-diabetic mice.


Assuntos
Cardiomiopatias Diabéticas/patologia , Imageamento por Ressonância Magnética , Detecção de Spin , Albuminas/química , Animais , Meios de Contraste/química , Óxidos N-Cíclicos/química , Diabetes Mellitus Experimental/patologia , Radicais Livres/química , Gadolínio DTPA/química , Ventrículos do Coração/patologia , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Modelos Químicos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Oxigênio/química , Estreptozocina
13.
Free Radic Biol Med ; 78: 111-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450331

RESUMO

Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA.


Assuntos
Compostos de Anilina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/metabolismo , Compostos Nitrosos/farmacologia , Western Blotting , Carcinógenos/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Células Hep G2 , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia Confocal , Detecção de Spin
14.
Artigo em Inglês | MEDLINE | ID: mdl-39449960

RESUMO

A number of post-translational oxidative modifications of the enzyme "cell-redox sensor" glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been reported. These modifications affect GAPDH structure, function, and cell fate; however no free-radical mechanisms have been reported in these processes. Herein we used the nitrone 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-based spin trapping techniques to examine a novel free radical mechanism that causes GAPDH inactivation and aggregation in RAW264.7 cells primed with lipopolysaccharide (LPS). In these primed cells, GAPDH is oxidized by myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) resulting in loss of enzyme activity and aggregation, accumulation of lactate and cell death. Due to the close spatial and physical proximity between MPO and GAPDH, and the oxidizing potential of HOCl, it may be the main species that triggers radicalization of GAPDH that ultimately results in enzyme aggregation and inactivation in LPS-primed macrophages. Lysine residues are the primary radicalization sites formed upon reaction of HOCl with the enzyme. Our data highlight the important relationship between radicalization of GAPDH and fate of stressed cells, which might help teasing out the cell response to stress at sites of inflammation.

15.
Free Radic Biol Med ; 76: 61-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25091900

RESUMO

Low-density lipoprotein (LDL) oxidation is the primary event in atherosclerosis, and LDL lipoperoxidation leads to modifications in apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno-spin trapping, we detected the formation of protein free radicals on LDL incubated with Cu(2+) or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1mM), Cu(2+) dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu(2+) showed maximum yields after 30 min. In contrast, the yields of apo B-100 radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate, and Trolox dose-dependently reduced apo B-100 free radical formation in LDL exposed to Cu(2+). In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu(2+) or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu(2+), when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans.


Assuntos
Antioxidantes/farmacologia , Apolipoproteína B-100/química , Cobre/farmacologia , Radicais Livres/metabolismo , Lipoproteínas LDL/química , Lipoxigenase/farmacologia , Vitamina E/farmacologia , Apolipoproteína B-100/metabolismo , Humanos , Cinética , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Detecção de Spin
16.
Biochim Biophys Acta ; 1840(2): 722-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23644035

RESUMO

BACKGROUND: Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW: To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS: Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE: The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Assuntos
Radicais Livres/análise , Imunoglobulina G/imunologia , Óxidos de Nitrogênio/química , Proteínas/imunologia , Detecção de Spin/métodos , Animais , Bioquímica , Radicais Livres/isolamento & purificação , Humanos , Óxidos de Nitrogênio/imunologia
17.
Biochim Biophys Acta ; 1832(12): 2153-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959048

RESUMO

Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.


Assuntos
Neoplasias Encefálicas/metabolismo , Óxidos N-Cíclicos/imunologia , Modelos Animais de Doenças , Radicais Livres/análise , Glioma/metabolismo , Imageamento por Ressonância Magnética , Detecção de Spin , Albuminas , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Meios de Contraste , Radicais Livres/isolamento & purificação , Gadolínio DTPA , Glioma/diagnóstico por imagem , Glioma/patologia , Imunoglobulina G/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Óxidos de Nitrogênio/metabolismo , Oxirredução , Radiografia , Marcadores de Spin/síntese química , Células Tumorais Cultivadas , Tirosina/análogos & derivados , Tirosina/metabolismo
18.
Free Radic Biol Med ; 65: 828-837, 2013 12.
Artigo em Inglês | MEDLINE | ID: mdl-23978375

RESUMO

Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin-gadolinium-diethylene triamine pentaacetic acid-biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p < 0.0001) compared to controls. MRI detected the presence of anti-DMPO adducts via a substantial decrease in %T1 change within the hippocampus, striatum, occipital, and medial cortex brain regions (p < 0.01 for all) in septic animals compared to shams, which was sustained for over 60 min (p < 0.05 for all). Fluorescently labeled streptavidin was used to target the anti-DMPO probe biotin, which was elevated in septic brain, liver, and lungs compared to sham. Ex vivo DMPO adducts (qualitative) and oxidative products, including 4-hydroxynonenal and 3-nitrotyrosine (quantitative, p < 0.05 for both), were elevated in septic brains compared to shams. This is the first study that has reported on the detection of in vivo and in situ levels of free radicals in murine septic encephalopathy.


Assuntos
Aldeídos/metabolismo , Radicais Livres/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Tirosina/análogos & derivados , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Óxidos N-Cíclicos , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Marcadores de Spin , Detecção de Spin , Tirosina/metabolismo
19.
Toxicol Appl Pharmacol ; 273(2): 281-8, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811327

RESUMO

Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 µM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure.


Assuntos
Cádmio/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Cádmio/administração & dosagem , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Fatores de Tempo , Células Tumorais Cultivadas
20.
Free Radic Biol Med ; 63: 351-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23722162

RESUMO

Free radicals associated with oxidative stress play a major role in amyotrophic lateral sclerosis (ALS). By combining immuno-spin trapping and molecular magnetic resonance imaging, in vivo trapped radical adducts were detected in the spinal cords of SOD1(G93A)-transgenic (Tg) mice, a model for ALS. For this study, the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) was administered (ip) over 5 days before administration (iv) of an anti-DMPO probe (anti-DMPO antibody covalently bound to an albumin-gadolinium-diethylenetriamine pentaacetic acid-biotin MRI contrast agent) to trap free radicals. MRI was used to detect the presence of the anti-DMPO radical adducts by a significant sustained increase in MR signal intensities (p < 0.05) or anti-DMPO probe concentrations measured from T1 relaxations (p < 0.01). The biotin moiety of the anti-DMPO probe was targeted with fluorescence-labeled streptavidin to locate the probe in excised tissues. Negative controls included either Tg ALS mice initially administered saline rather than DMPO followed by the anti-DMPO probe or non-Tg mice initially administered DMPO and then the anti-DMPO probe. The anti-DMPO probe was found to bind to neurons via colocalization fluorescence microscopy. DMPO adducts were also confirmed in diseased/nondiseased tissues from animals administered DMPO. Apparent diffusion coefficients from diffusion-weighted images of spinal cords from Tg mice were significantly elevated (p < 0.001) compared to wild-type controls. This is the first report regarding the detection of in vivo trapped radical adducts in an ALS model. This novel, noninvasive, in vivo diagnostic method can be applied to investigate the involvement of free radical mechanisms in ALS rodent models.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Radicais Livres/isolamento & purificação , Imageamento por Ressonância Magnética , Superóxido Dismutase/isolamento & purificação , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Óxidos N-Cíclicos/administração & dosagem , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Radiografia , Detecção de Spin , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA