Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39249490

RESUMO

PURPOSE: Epithelial cell adhesion molecule (EpCAM) is a potential therapeutic target and anchoring molecule for circulating and disseminated tumour cells (CTC/DTC) in liquid biopsy. In this study, we aimed to construct EpCAM-specific immuno-positron emission tomography (immunoPET) imaging probes and assess the diagnostic abilities in preclinical cancer models. METHODS: By engineering six single-domain antibodies (e.g., EPCD1 - 6) targeting EpCAM of different binding properties and labelling with 68Ga (T1/2 = 1.1 h) and 18F (T1/2 = 110 min), we developed a series of EpCAM-targeted immunoPET imaging probes. The probes' pharmacokinetics and diagnostic accuracies were investigated in cell-derived human colorectal (LS174T) and esophageal cancer (OE19) tumour models. RESULTS: Based on in vitro binding affinities and in vivo pharmacokinetics of the first three tracers ([68Ga]Ga-NOTA-EPCD1, [68Ga]Ga-NOTA-EPCD2, and [68Ga]Ga-NOTA-EPCD3), we selected [68Ga]Ga-NOTA-EPCD3 for tumour imaging which showed an average tumour uptake of 2.06 ± 0.124%ID/g (n = 3) in LS174T cell-derived tumour model. Development and characterisation of [18F]AIF-RESCA-EPCD3 showed comparable tumour uptake of 1.73 ± 0.0471%ID/g (n = 3) in the same tumour model. Further validation of [68Ga]Ga-NOTA-EPCD3 in OE19 cell-derived tumour model showed an average tumour uptake of 4.27 ± 1.16%ID/g and liver uptake of 13.5 ± 1.30%ID/g (n = 3). Near-infrared fluorescence imaging with Cy7-EPCD3 confirmed the in vivo pharmacokinetics and relatively high liver accumulation. We further synthesized another three 18F-labeled nanobody tracers ([18F]AIF-RESCA-EPCD4, [18F]AIF-RESCA-EPCD5, and [18F]AIF-RESCA-EPCD6) and found that [18F]AIF-RESCA-EPCD6 had the best pharmacokinetics with low background. [18F]AIF-RESCA-EPCD6 showed explicit uptake in the subcutaneously inoculated OE19 tumour model with an average uptake of 4.70 ± 0.26%ID/g (n = 3). In comparison, the corresponding tumour uptake (0.17 ± 0.25%ID/g, n = 3) in the EPCD6 blocking group was substantially lower (P < 0.001), indicating the targeting specificity of the tracer. CONCLUSIONS: We developed a series of 68Ga/18F-labeled nanobody tracers targeting human EpCAM. ImmunoPET imaging with [18F]AIF-RESCA-EPCD6 may facilitate better use of EpCAM-targeted therapeutics by noninvasively displaying the target's expression dynamics.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39259226

RESUMO

PURPOSE: Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells (PC) in the bone marrow (BM). B-cell maturation antigen (BCMA) is predominantly expressed in malignant plasma cells, and associated with the proliferation, survival, and progression of various myeloma cells. Given these important roles, BCMA emerges as an ideal target antigen for MM therapy. However, effective stratification of patients who may benefit from targeted BCMA therapy and real-time monitoring the therapeutic efficacy poses significant clinical challenge. This study aims to develop a BCMA targeted diagnostic modality, and preliminarily explore its potential value in the radio-immunotherapy of MM. EXPERIMENTAL DESIGN: Using zirconium-89 (89Zr, t1/2 = 78.4 h) for labeling the BCMA-specific antibody, the BCMA-targeting PET tracer [89Zr]Zr-DFO-BCMAh230430 was prepared. The EC50 values of BCMAh230430 and DFO-BCMAh230430 were determined by ELISA assay. BCMA expression was assessed in four different tumor cell lines (MM.1S, RPMI 8226, BxPC-3, and KYSE520) through Western blot and flow cytometry. In vitro binding affinity was determined by cell uptake studies of [89Zr]Zr-DFO-BCMAh230430 in these tumor cell lines. For in vivo evaluation, PET imaging and ex vivo biodistribution studies were conducted in tumor-bearing mice to evaluate imaging performance and systemic distribution of [89Zr]Zr-DFO-BCMAh230430. Immunochemistry analysis was performed to detect BCMA expression in tumor tissues, confirming the specificity of our probe. Furthermore, we explored the anti-tumor efficacy of Lutetium-177 labeled BCMA antibody, [177Lu]Lu-DTPA-BCMAh230430, in tumor bearing-mice to validate its radioimmunotherapy potential. RESULTS: The radiolabeling of [89Zr]Zr-DFO-BCMAh230430 and [177Lu]Lu-DTPA-BCMAh230430 showed satisfactory radiocharacteristics, with a radiochemical purity exceeding 99%. ELISA assay results revealed closely aligned EC50 values for BCMAh230430 and DFO-BCMAh230430, which are 57 pM and 67 pM, respectively. Western blot and flow cytometry analyses confirmed the highest BCMA expression level. Cell uptake data indicated that MM.1S cells had a total cellular uptake (the sum of internalization and surface binding) of 38.3% ± 1.53% for [89Zr]Zr-DFO-BCMAh230430 at 12 h. PET imaging of [89Zr]Zr-DFO-BCMAh230430 displayed radioactive uptake of 7.71 ± 0.67%ID/g in MM.1S tumors and 4.13 ± 1.21%ID/g in KYSE520 tumors at 168 h post-injection (n = 4) (P < 0.05), consistent with ex vivo biodistribution studies. Immunohistochemical analysis of tumor tissues confirmed higher BCMA expression in MM.1S tumors xenograft compared to KYSE520 tumors. Notably, [177Lu]Lu-DTPA-BCMAh230430 showed some anti-tumor efficacy, evidenced by slowed tumor growth. Furthermore, no significant difference in body weight was observed in MM.1S tumor-bearing mice over 14 days of administration with or without [177Lu]Lu-DTPA-BCMAh230430. CONCLUSIONS: Our study has successfully validated the essential role of [89Zr]Zr-DFO-BCMAh230430 in non-invasively monitoring BCMA status in MM tumors, showing favorable tumor uptake and specific binding affinity to MM tumors. Furthermore, our research revealed, as a proof-of-concept, the effectiveness of [177Lu]Lu-DTPA-BCMAh230430 in radioimmunotherapy for MM tumors. In conclusion, we present a novel BCMA antibody-based radiotheranostic modality that holds promise for achieving efficient and precise MM diagnostic and therapy.

3.
J Nucl Med ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266295

RESUMO

Bispecific antibodies (bsAbs) are engineered to target 2 different epitopes simultaneously. About 75% of the 16 clinically approved bsAbs have entered the clinic internationally since 2022. Hence, research on biomedical imaging of various radiolabeled bsAb scaffolds may serve to improve patient selection for bsAb therapy. Here, we provide a comprehensive overview of recent advances in radiolabeled bsAbs for imaging via PET or SPECT. We compare direct targeting and pretargeting approaches in preclinical and clinical studies in oncologic research. Furthermore, we show preclinical applications of imaging bsAbs in neurodegenerative diseases. Finally, we offer perspectives on the future directions of imaging bsAbs based on their challenges and opportunities.

4.
Sci Rep ; 14(1): 17994, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097625

RESUMO

CD73 is a cell-surface ectoenzyme that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine, which in turn can promote resistance to immune checkpoint blockade therapy. Immune response may therefore be improved by targeting tumor CD73, and this possibility underlines the need to non-invasively assess tumor CD73 level. In this study, we developed a cysteine site-specific 89Zr-labeled anti-CD73 (89Zr-CD73) IgG immuno-PET technique that can image tumor CD73 expression in living bodies. Anti-CD73 IgG was reduced with tris(2-carboxyethyl)phosphine, underwent sulfohydryl moiety-specific conjugation with deferoxamine-maleimide, and was radiolabeled with 89Zr. CT26 mouse colon cancer cells, CT26/CD73 cells engineered to constitutively overexpress CD73, and 4T1.2 mouse breast cancer cells underwent cell binding assays and western blotting. Balb/c nude mice bearing tumors underwent 89Zr-CD73 IgG PET imaging and biodistribution studies. 89Zr-CD73 IgG showed 20-fold higher binding to overexpressing CT26/CD73 cells compared to low-expressing CT26 cells, and moderate expressing 4T1.2 cells showed uptake that was 38.9 ± 1.51% of CT26/CD73 cells. Uptake was dramatically suppressed by excess unlabeled antibody. CD73 content proportionately increased in CT26 and CT26/CD73 cell mixtures was associated with linear increases in 89Zr-CD73 IgG uptake. 89Zr-CD73 IgG PET/CT displayed clear accumulation in CT26/CD73 tumors with greater uptake compared to CT26 tumors (3.13 ± 1.70%ID/g vs. 1.27 ± 0.31%ID/g at 8 days; P = 0.04). Specificity was further supported by low CT26/CD73 tumor-to-blood ratio of 89Zr-isotype-IgG compared to 89Zr-CD73 IgG (0.48 ± 0.08 vs. 2.68 ± 0.52 at 4 days and 0.53 ± 0.07 vs. 4.81 ± 1.02 at 8 days; both P < 0.001). Immunoblotting and immunohistochemistry confirmed strong CD73 expression in CT26/CD73 tumors and low expression in CT26 tumors. 4T1.2 tumor mice also showed clear 89Zr-CD73 IgG accumulation at 8 days (3.75 ± 0.70%ID/g) with high tumor-to-blood ratio compared to 89Zr-isotype-IgG (4.91 ± 1.74 vs. 1.20 ± 0.28; P < 0.005). 89Zr-CD73 IgG specifically targeted CD73 on high expressing cancer cells in vitro and tumors in vivo. Thus, 89Zr-CD73 IgG immuno-PET may be useful for the non-invasive monitoring of CD73 expression in tumors of living subjects.


Assuntos
5'-Nucleotidase , Neoplasias do Colo , Cisteína , Tomografia por Emissão de Pósitrons , Zircônio , Animais , 5'-Nucleotidase/metabolismo , Zircônio/química , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Camundongos , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Cisteína/metabolismo , Humanos , Radioisótopos , Feminino , Camundongos Endogâmicos BALB C , Distribuição Tecidual , Camundongos Nus , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo
5.
Cancers (Basel) ; 16(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39199666

RESUMO

The combination of immunoPET-where an antibody (Ab) is labeled with an isotope for PET imaging-and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection for subsequent radioimmunotherapy. It also facilitates the assessment of tumor response to therapy, allowing for treatment adjustments if necessary. In addition, immunoPET provides critical pharmacokinetic data, including antibody biodistribution and clearance rates, which are essential for dosimetry calculations and treatment protocol optimization. There are still challenges to overcome. Identifying appropriate target antigens that are selectively expressed on cancer cells while minimally expressed on normal tissues remains a major hurdle to reduce off-target toxicity. In addition, it is critical to optimize the pharmacokinetics of radiolabeled antibodies to maximize tumor uptake and minimize normal tissue uptake, particularly in vital organs such as the liver and kidney. This approach offers the potential for targeted and personalized cancer therapy with reduced systemic toxicity by exploiting the specificity of monoclonal antibodies and the cytotoxic effects of radiation. However, further research is needed to address remaining challenges and to optimize these technologies for clinical use.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38987489

RESUMO

PURPOSE: Immune cells are capable of eliminating leukemic cells, as evidenced by outcomes in hematopoietic cell transplantation (HCT). However, patients who fail induction therapy will not benefit from HCT due to their minimal residual disease (MRD) status. Thus, we aimed to develop an immunomodulatory agent to reduce MRD by activating immune effector cells in the presence of leukaemia cells via a novel fusion protein that chimerises two clinically tolerated biologics: a CD33 antibody and the IL15Ra/IL15 complex (CD33xIL15). METHODS: We generated a set of CD33xIL15 fusion protein constructs with varying configurations and identified those with the best in vitro AML-binding, T cell activation, and NK cell potentiation. Using 89Zr-immunoPET imaging we then evaluated the biodistribution and in vivo tumour retention of the most favourable CD33xIL15 constructs in an AML xenograft model. Ex vivo biodistribution studies were used to confirm the pharmacokinetics of the constructs. RESULTS: Two of the generated fusion proteins, CD33xIL15 (N72D) and CD33xIL15wt, demonstrated optimal in vitro behaviour and were further evaluated in vivo. These studies revealed that the CD33xIL15wt candidate was capable of being retained in the tumour for as long as its parental CD33 antibody, Lintuzumab (13.9 ± 3.1%ID/g vs 18.6 ± 1.1%ID/g at 120 h). CONCLUSION: This work demonstrates that CD33xIL15 fusion proteins are capable of targeting leukemic cells and stimulating local T cells in vitro and of concentrating in the tumour in AML xenografts. It also highlights the importance of 89Zr-immunoPET to guide the development and selection of tumour-targeted antibody-cytokine fusion proteins.

7.
Pharmaceutics ; 16(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39065579

RESUMO

Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging offers an attractive way for this purpose. ImmunoPET provides specific imaging with positron emission tomography (PET) using monoclonal antibodies (mAb) or its fragments as vector. By combining the high targeting specificity of mAb and the sensitivity of PET technique, immunoPET could noninvasively and dynamically reveal tumor antigens expression and provide theranostic tools of several types of malignancies. Because of their slow kinetics, mAbs require radioelements defined by a consistent half-life. Zirconium 89 (89Zr) and Copper 64 (64Cu) are radiometals with half-lives suitable for mAb labeling. Radiolabeling with a radiometal requires the prior use of a bifunctional chelate agent (BFCA) to functionalize mAb for radiometal chelation, in a second step. There are a number of BFCA available and much research is focused on antibody functionalization techniques or on developing the optimum chelating agent depending the selected radiometal. In this manuscript, we present a critical account of radiochemical techniques with radionuclides 89Zr and 64Cu and their applications in preclinical and clinical immuno-PET imaging.

8.
Res Sq ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38978570

RESUMO

Purpose: Glypican-3 (GPC3)-targeted radioisotope immuno-positron emission tomography (immunoPET) may lead to earlier and more accurate diagnosis of hepatocellular carcinoma (HCC), thus facilitating curative treatment, decreasing early recurrence, and enhancing patient survival. We previously demonstrated reliable HCC detection using a zirconium-89-labeled murine anti-GPC3 antibody (89Zr-αGPC3M) for immunoPET. This study evaluated the efficacy of the humanized antibody successor (αGPC3H) to further clinical translation of a GPC3-based theranostic for HCC. Methods: In vitro αGPC3 binding to HepG2 cells was assessed by flow cytometry. In vivo 89Zr-αGPC3H and 89Zr-αGPC3M tumor uptake was evaluated by PET/CT and biodistribution studies in an orthotopic xenograft mouse model of HCC. Results: αGPC3H maintained binding to GPC3 in vitro and 89Zr-αGPC3H immunoPET identified liver tumors in vivo. PET/CT and biodistribution analyses demonstrated high 89Zr-αGPC3H tumor uptake and tumor-to-liver ratios, with no difference between groups. Conclusion: Humanized αGPC3 successfully targeted GPC3 in vitro and in vivo. 89Zr-αGPC3H immunoPET had comparable tumor detection to 89Zr-αGPC3M, with highly specific tumor uptake, making it a promising strategy to improve HCC detection.

9.
Mol Pharm ; 21(8): 3992-4003, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38941565

RESUMO

Lymphocyte activation gene 3 (LAG-3) has attracted much attention as a potentially valuable immune checkpoint. Individual identification of LAG-3 expression at screening and during treatment could improve the successful implementation of anti-LAG-3 therapies. HuL13 is a human IgG1 monoclonal antibody that binds to the LAG-3 receptor in T cells. Here, we used [89Zr]Zr-labeled HuL13 to delineate LAG-3+ T-cell infiltration into tumors via positron emission tomography (PET) imaging. A549/LAG-3 cells, which stably express LAG-3, were generated by infection with lentivirus. The uptake of [89Zr]Zr-DFO-HuL13 in A549/LAG-3 cells was greater than that in the negative control (A549/NC) cells at each time point. The equilibrium dissociation constant (Kd) of [89Zr]Zr-DFO-HuL13 for the LAG-3 receptor was 8.22 nM. PET imaging revealed significant uptake in the tumor areas of A549/LAG-3 tumor-bearing mice from 24 h after injection (SUVmax = 2.43 ± 0.06 at 24 h). As a proof of concept, PET imaging of the [89Zr]Zr-DFO-HuL13 tracer was further investigated in an MC38 tumor-bearing humanized LAG-3 mouse model. PET imaging revealed that the [89Zr]Zr-DFO-HuL13 tracer specifically targets human LAG-3 expressed on tumor-infiltrating lymphocytes (TILs). In addition to the tumors, the spleen was also noticeably visible. Tumor uptake of the [89Zr]Zr-DFO-HuL13 tracer was lower than its uptake in the spleen, but high uptake in the spleen could be reduced by coinjection of unlabeled antibodies. Coinjection of unlabeled antibodies increases tracer activity in the blood pool, thereby improving tumor uptake. Dosimetry evaluation of the healthy mouse models revealed that the highest absorbed radiation dose was in the spleen, followed by the liver and heart wall. In summary, these studies demonstrate the feasibility of using the [89Zr]Zr-DFO-HuL13 tracer for the detection of LAG-3 expression on TILs. Further clinical evaluation of the [89Zr]Zr-DFO-HuL13 tracer may be of significant help in the stratification and management of patients suitable for anti-LAG-3 therapy.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , Linfócitos do Interstício Tumoral , Tomografia por Emissão de Pósitrons , Zircônio , Animais , Humanos , Camundongos , Zircônio/química , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Antígenos CD/imunologia , Radioisótopos/química , Anticorpos Monoclonais/química , Feminino , Distribuição Tecidual
10.
Adv Sci (Weinh) ; 11(30): e2402361, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874523

RESUMO

Radiotheranostics is a rapidly growing approach in personalized medicine, merging diagnostic imaging and targeted radiotherapy to allow for the precise detection and treatment of diseases, notably cancer. Radiolabeled antibodies have become indispensable tools in the field of cancer theranostics due to their high specificity and affinity for cancer-associated antigens, which allows for accurate targeting with minimal impact on surrounding healthy tissues, enhancing therapeutic efficacy while reducing side effects, immune-modulating ability, and versatility and flexibility in engineering and conjugation. However, there are inherent limitations in using antibodies as a platform for radiopharmaceuticals due to their natural activities within the immune system, large size preventing effective tumor penetration, and relatively long half-life with concerns for prolonged radioactivity exposure. Antibody engineering can solve these challenges while preserving the many advantages of the immunoglobulin framework. In this review, the goal is to give a general overview of antibody engineering and design for tumor radiotheranostics. Particularly, the four ways that antibody engineering is applied to enhance radioimmunoconjugates: pharmacokinetics optimization, site-specific bioconjugation, modulation of Fc interactions, and bispecific construct creation are discussed. The radionuclide choices for designed antibody radionuclide conjugates and conjugation techniques and future directions for antibody radionuclide conjugate innovation and advancement are also discussed.


Assuntos
Neoplasias , Radioimunoterapia , Humanos , Neoplasias/imunologia , Neoplasias/radioterapia , Neoplasias/terapia , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Imunoconjugados/química , Engenharia de Proteínas/métodos
11.
Front Immunol ; 15: 1405485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915392

RESUMO

Introduction: This study aimed to investigate the dynamics of programmed death-ligand 1 (PD-L1) expression, spatial heterogeneity, and binding affinity of FDA-approved anti-PD-L1 antibodies (avelumab and atezolizumab) in gastric cancer. Additionally, we determined how PD-L1 glycosylation impacts antibody accumulation in gastric cancer cells. Methods: Dynamic PD-L1 expression was examined in NCIN87 gastric cancer cells. Comparative binding studies of avelumab and atezolizumab were conducted in gastric cancer models, both in vitro and in vivo. Antibody uptake in tumors was visualized through positron emission tomography (PET) imaging. PD-L1 glycosylation status was determined via Western blot analyses before and after PNGase F treatment. Results: Consistent findings revealed time-dependent PD-L1 induction in NCIN87 gastric cancer cells and spatial heterogeneity in tumors, as shown by PET imaging and immunofluorescence. Avelumab displayed superior binding affinity to NCIN87 cells compared to atezolizumab, confirmed by in vivo PET imaging and ex vivo biodistribution analyses. Notably, PD-L1 glycosylation at approximately 50 kDa was observed, with PNGase F treatment inducing a shift to 35 kDa in molecular weight. Tissue samples from patient-derived xenografts (PDXs) validated the presence of both glycosylated and deglycosylated PD-L1 (degPD-L1) forms in gastric cancer. Immunofluorescence microscopy and binding assays demonstrated enhanced avelumab binding post-deglycosylation. Discussion: This study provides an understanding of dynamic and spatially heterogeneous PD-L1 expression in gastric cancer. Anti-PD-L1 immunoPET was able to visualize gastric tumors, and PD-L1 glycosylation has significant implications for antibody recognition. These insights contribute to demonstrating the complexities of PD-L1 in gastric cancer, holding relevance for refining PD-L1 imaging-based approaches.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/diagnóstico por imagem , Antígeno B7-H1/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Glicosilação , Anticorpos Monoclonais Humanizados/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Tomografia por Emissão de Pósitrons
12.
Breast Cancer Res ; 26(1): 104, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918836

RESUMO

BACKGROUND: Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologically "hot" tumors. However, immune dynamics in the low T-cell infiltrating "cold" tumor immune microenvironment during ICB remain poorly understood. This study uses molecular imaging to evaluate changes in CD4 + T cells and CD8 + T cells during ICB in breast cancer models and examines biomarkers of response. METHODS: [89Zr]Zr-DFO-CD4 and [89Zr]Zr-DFO-CD8 radiotracers were used to quantify changes in intratumoral and splenic CD4 T cells and CD8 T cells in response to ICB treatment in 4T1 and MMTV-HER2 mouse models, which represent immunologically "cold" tumors. A correlation between PET quantification metrics and long-term anti-tumor response was observed. Further biological validation was obtained by autoradiography and immunofluorescence. RESULTS: Following ICB treatment, an increase in the CD8-specific PET signal was observed within 6 days, and an increase in the CD4-specific PET signal was observed within 2 days in tumors that eventually responded to immunotherapy, while no significant differences in CD4 or CD8 were found at the baseline of treatment that differentiated responders from nonresponders. Furthermore, mice whose tumors responded to ICB had a lower CD8 PET signal in the spleen and a higher CD4 PET signal in the spleen compared to non-responders. Intratumoral spatial heterogeneity of the CD8 and CD4-specific PET signals was lower in responders compared to non-responders. Finally, PET imaging, autoradiography, and immunofluorescence signals were correlated when comparing in vivo imaging to ex vivo validations. CONCLUSIONS: CD4- and CD8-specific immuno-PET imaging can be used to characterize the in vivo distribution of CD4 + and CD8 + T cells in response to immune checkpoint blockade. Imaging metrics that describe the overall levels and distribution of CD8 + T cells and CD4 + T cells can provide insight into immunological alterations, predict biomarkers of response to immunotherapy, and guide clinical decision-making in those tumors where the kinetics of the response differ.


Assuntos
Neoplasias da Mama , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Inibidores de Checkpoint Imunológico , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Animais , Microambiente Tumoral/imunologia , Feminino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linhagem Celular Tumoral , Zircônio , Compostos Radiofarmacêuticos , Radioisótopos
13.
Expert Opin Drug Deliv ; 21(5): 797-807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38881261

RESUMO

BACKGROUND: Regadenoson, an agonist of adenosine A2 receptors, enables transient blood-brain barrier (BBB) disruption. The relevance of regadenoson as a pharmacological strategy for brain delivery was investigated using in vivo PET imaging in rats. RESEARCH DESIGN AND METHODS: Kinetic modeling of brain PET data was performed to estimate the impact of regadenoson (0.05 mg.kg-1, i.v.) on BBB permeation compared with control rats (n = 4-6 per group). Three radiolabeled compounds of different sizes, which do not cross the intact BBB, were tested. RESULTS: Regadenoson significantly increased the BBB penetration (+116 ± 13%, p < 0.001) of [18F]2-deoxy-2-fluoro-D-sorbitol ([18F]FDS, MW = 183 Da), a small-molecule marker of BBB permeability. The magnitude of the effect was different across brain regions, with a maximum increase in the striatum. Recovery of BBB integrity was observed 30 min after regadenoson injection. Regadenoson also increased the brain penetration (+72 ± 45%, p < 0.05) of a radiolabeled nanoparticle [89Zr]AGuIX (MW = 9 kDa). However, the brain kinetics of a monoclonal antibody ([89Zr]mAb, MW = 150 kDa) remained unchanged (p > 0.05). CONCLUSIONS: PET imaging showed the features and limitations of BBB disruption induced by regadenoson in terms of extent, regional distribution, and reversibility. Nevertheless, regadenoson enables the brain delivery of small molecules or nanoparticles in rats.


Assuntos
Agonistas do Receptor A2 de Adenosina , Barreira Hematoencefálica , Encéfalo , Tomografia por Emissão de Pósitrons , Purinas , Pirazóis , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Purinas/farmacologia , Purinas/administração & dosagem , Purinas/farmacocinética , Pirazóis/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Ratos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Masculino , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Ratos Sprague-Dawley , Permeabilidade , Radioisótopos de Flúor , Ratos Wistar
14.
EJNMMI Radiopharm Chem ; 9(1): 40, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733556

RESUMO

BACKGROUND: During the previous two decades, PET imaging of biopharmaceuticals radiolabeled with zirconium-89 has become a consistent tool in preclinical and clinical drug development and patient selection, primarily due to its advantageous physical properties that allow straightforward radiolabeling of antibodies (89Zr-immuno-PET). The extended half-life of 78.4 h permits flexibility with respect to the logistics of tracer production, transportation, and imaging and allows imaging at later points in time. Additionally, its relatively low positron energy contributes to high-sensitivity, high-resolution PET imaging. Considering the growing interest in radiolabeling antibodies, antibody derivatives, and other compound classes with 89Zr in both clinical and pre-clinical settings, there is an urgent need to acquire valuable recommendations and guidelines towards standardization of labeling procedures. MAIN BODY: This review provides an overview of the key aspects of 89Zr-radiochemistry and radiopharmaceuticals. Production of 89Zr, conjugation with the mostly used chelators and radiolabeling strategies, and quality control of the radiolabeled products are described in detail, together with discussions about alternative options and critical steps, as well as recommendations for troubleshooting. Moreover, some historical background on 89Zr-immuno-PET, coordination chemistry of 89Zr, and future perspectives are provided. This review aims to serve as a quick-start guide for scientists new to the field of 89Zr-immuno-PET and to suggest approaches for harmonization and standardization of current procedures. CONCLUSION: The favorable PET imaging characteristics of 89Zr, its excellent availability due to relatively simple production and purification processes, and the development of suitable bifunctional chelators have led to the widespread use of 89Zr. The combination of antibodies and 89Zr, known as 89Zr-immuno-PET, has become a cornerstone in drug development and patient selection in recent years. Despite the advanced state of 89Zr-immuno-PET, new developments in chelator conjugation and radiolabeling procedures, application in novel compound classes, and improved PET scanner technology and quantification methods continue to reshape its landscape towards improving clinical outcomes.

15.
J Labelled Comp Radiopharm ; 67(8): 280-287, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744538

RESUMO

A key aspect for the applicability of 89Zr-radioimmunoconjugates is inert modification and radiolabeling. The two commercially available bifunctional variants of the siderophore desferrioxamine (DFO), Fe-DFO-N-suc-TFP-ester and p-NCS-Bz-DFO, are most often used for clinical 89Zr-immuno-PET. The use of Fe-DFO-N-suc-TFP-ester is advantageous with regard to higher radiolysis stability and more facile assessment of radiochemical purity as well as chelator-to-mAb ratio. However, not all mAbs withstand the Fe-removal step at relatively low pH (4-4.5) using EDTA, which is needed after conjugation to allow 89Zr labeling. In this study, it was investigated whether hydroxybenzyl ethylenediamine (HBED) or the clinically approved deferiprone (DFP) can serve as an alternative for EDTA to establish a pH-independent mild method for Fe-removal and thereby broaden the applicability of Fe-DFO-N-suc-TFP-ester. Carrier-added [59Fe]Fe-DFO-N-suc-TFP-ester was used for mAb modification to enable direct tracking of the Fe-removal efficiency under various conditions. Whereas incomplete Fe-removal with HBED was observed at pH 5 or higher, Fe-removal with DFP was possible at a broad pH range (4-9). This provides a mild, pH-independent method for Fe-removal, improving the applicability and attractiveness of Fe-DFO-N-suc-TFP-ester for 89Zr-mAb preparation.


Assuntos
Desferroxamina , Ferro , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Zircônio/química , Desferroxamina/química , Radioisótopos/química , Ferro/química , Tomografia por Emissão de Pósitrons/métodos , Piridonas/química , Deferiprona/química , Imunoconjugados/química , Compostos Radiofarmacêuticos/química , Anticorpos Monoclonais/química
16.
J Nucl Med ; 65(7): 1043-1050, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38782457

RESUMO

The incidence of androgen receptor (AR)-negative (AR-) prostate cancer, including aggressive neuroendocrine prostate cancer (NEPC), has more than doubled in the last decade, but its timely diagnosis is difficult as it lacks typical prostate cancer hallmarks. The carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) has recently been identified as an upregulated surface antigen in NEPC. We developed an immuno-PET agent targeting CEACAM5 and evaluated its ability to delineate AR- prostate cancer in vivo. Methods: CEACAM5 expression was evaluated in a panel of prostate cancer cell lines by immunohistochemistry and Western blotting. The CEACAM5-targeting antibody labetuzumab was conjugated with the chelator desferrioxamine (DFO) and radiolabeled with 89Zr. The in vivo distribution of the radiolabeled antibody was evaluated in xenograft prostate cancer models by PET imaging and ex vivo organ distribution. Results: The NEPC cell line H660 exhibited strong CEACAM5 expression, whereas expression was limited in the AR- cell lines PC3 and DU145 and absent in the AR-positive cell line LNCaP. [89Zr]Zr-DFO-labetuzumab imaging was able to clearly delineate both neuroendocrine H660 xenografts and AR- DU145 in vivo but could not detect the AR-positive xenograft LNCaP. Conclusion: Immuno-PET imaging with [89Zr]Zr-DFO-labetuzumab is a promising diagnostic tool for AR- prostate cancer.


Assuntos
Proteínas Ligadas por GPI , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Animais , Camundongos , Receptores Androgênicos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Antígenos CD/metabolismo , Zircônio , Distribuição Tecidual , Moléculas de Adesão Celular/metabolismo , Radioisótopos , Antígeno Carcinoembrionário
17.
EJNMMI Radiopharm Chem ; 9(1): 38, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705946

RESUMO

BACKGROUND: Positron emission tomography (PET) is a highly sensitive method that provides fine resolution images, useful in the field of clinical diagnostics. In this context, Zirconium-89 (89Zr)-based imaging agents have represented a great challenge in molecular imaging with immuno-PET, which employs antibodies (mAbs) as biological vectors. Indeed, immuno-PET requires radionuclides that can be attached to the mAb to provide stable in vivo conjugates, and for this purpose, the radioactive element should have a decay half-life compatible with the time needed for the biodistribution of the immunoglobulin. In this regard, 89Zr is an ideal radioisotope for immuno-PET because its half-life perfectly matches the in vivo pharmacokinetics of mAbs. RESULTS: The main objective of this work was the design and synthesis of a series of bifunctional octadentate pseudopeptides able to generate stable 89Zr complexes. To achieve this, here we investigated hydroxamate, N-methylhydroxamate and catecholate chelating moieties in complexing radioactive zirconium. N-methylhydroxamate proved to be the most effective 89Zr-chelating group. Furthermore, the increased flexibility and hydrophilicity obtained by using polyoxyethylene groups spacing the hydroxamate units led to chelators capable of rapidly forming (15 min) stable and water-soluble complexes with 89Zr under mild reaction conditions (aqueous environment, room temperature, and physiological pH) that are mandatory for complexation reactions involving biomolecules. Additionally, we report challenge experiments with the competitor ligand EDTA and metal ions such as Fe3+, Zn2+ and Cu2+. In all examined conditions, the chelators demonstrated stability against transmetallation. Finally, a maleimide moiety was introduced to apply one of the most promising ligands in bioconjugation reactions through Thiol-Michael chemistry. CONCLUSION: Combining solid phase and solution synthesis techniques, we identified novel 89Zr-chelating molecules with a peptide scaffold. The adopted chemical design allowed modulation of molecular flexibility, hydrophilicity, as well as the decoration with different zirconium chelating groups. Best results in terms of 89Zr-chelating properties were achieved with the N-methyl hydroxamate moiety. The Zirconium complexes obtained with the most effective compounds were water-soluble, stable to transmetallation, and resistant to peptidases for at least 6 days. Further studies are needed to assess the potential of this novel class of molecules as Zirconium-chelating agents for in vivo applications.

18.
Biomed Pharmacother ; 175: 116669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677243

RESUMO

BACKGROUND: The lack of an efficient way to screen patients who are responsive to immunotherapy challenges PD1/CTLA4-targeting cancer treatment. Immunotherapeutic efficacy cannot be clearly determined by peripheral blood analyses, tissue gene markers or CT/MR value. Here, we used a radionuclide and imaging techniques to investigate the novel dual targeted antibody cadonilimab (AK104) in PD1/CTLA4-positive cells in vivo. METHODS: First, humanized PD1/CTLA4 mice were purchased from Biocytogen Pharmaceuticals (Beijing) Co., Ltd. to express hPD1/CTLA4 in T-cells. Then, mouse colon cancer MC38-hPD-L1 cell xenografts were established in humanized mice. A bispecific antibody targeting PD1/CTLA4 (AK104) was labeled with radio-nuclide iodine isotopes. Immuno-PET/CT imaging was performed using a bispecific monoclonal antibody (mAb) probe 124I-AK104, developed in-house, to locate PD1+/CTLA4+ tumor-infiltrating T cells and monitor their distribution in mice to evaluate the therapeutic effect. RESULTS: The 124I-AK104 dual-antibody was successfully constructed with ideal radiochemical characteristics, in vitro stability and specificity. The results of immuno-PET showed that 124I-AK104 revealed strong hPD1/CTLA4-positive responses with high specificity in humanized mice. High uptake of 124I-AK104 was observed not only at the tumor site but also in the spleen. Compared with PD1- or CTLA4-targeting mAb imaging, 124I-AK104 imaging had excellent standard uptake values at the tumor site and higher tumor to nontumor (T/NT) ratios. CONCLUSIONS: The results demonstrated the potential of translating 124I-AK104 into a method for screening patients who benefit from immunotherapy and the efficacy, as well as the feasibility, of this method was verified by immuno-PET imaging of humanized mice.


Assuntos
Anticorpos Biespecíficos , Antígeno CTLA-4 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor de Morte Celular Programada 1 , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Humanos , Camundongos , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptor de Morte Celular Programada 1/imunologia , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Radioisótopos do Iodo , Ensaios Antitumorais Modelo de Xenoenxerto , Distribuição Tecidual , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Feminino
19.
EMBO Mol Med ; 16(5): 1143-1161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565806

RESUMO

Accurately predicting and selecting patients who can benefit from targeted or immunotherapy is crucial for precision therapy. Trophoblast cell surface antigen 2 (Trop2) has been extensively investigated as a pan-cancer biomarker expressed in various tumours and plays a crucial role in tumorigenesis through multiple signalling pathways. Our laboratory successfully developed two 68Ga-labelled nanobody tracers that can rapidly and specifically target Trop2. Of the two tracers, [68Ga]Ga-NOTA-T4, demonstrated excellent pharmacokinetics in preclinical mouse models and a beagle dog. Moreover, [68Ga]Ga-NOTA-T4 immuno-positron emission tomography (immunoPET) allowed noninvasive visualisation of Trop2 heterogeneous and differential expression in preclinical solid tumour models and ten patients with solid tumours. [68Ga]Ga-NOTA-T4 immunoPET could facilitate clinical decision-making through patient stratification and response monitoring during Trop2-targeted therapies.


Assuntos
Antígenos de Neoplasias , Moléculas de Adesão Celular , Neoplasias , Tomografia por Emissão de Pósitrons , Animais , Cães , Feminino , Camundongos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Moléculas de Adesão Celular/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Tomografia por Emissão de Pósitrons/métodos , Anticorpos de Domínio Único/imunologia
20.
Am J Nucl Med Mol Imaging ; 14(1): 31-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500749

RESUMO

Breast cancer (BrCa) ranks as the most prevalent malignant neoplasm affecting women worldwide. The expression of programmed death-ligand 1 (PD-L1) in BrCa has recently emerged as a biomarker for immunotherapy response, but traditional immunohistochemistry (IHC)-based methods are hindered by spatial and temporal heterogeneity. Noninvasive and quantitative PD-L1 imaging using appropriate radiotracers can serve to determine PD-L1 expression in tumors. This study aims to demonstrate the viability of PET imaging with 64Cu-labeled Durvalumab (abbreviated as Durva) to assess PD-L1 expression using a murine xenograft model of breast cancer. Durvalumab, a human IgG1 monoclonal antibody against PD-L1, was assessed for specificity in vitro in two cancer cell lines (MDA-MB-231 triple-negative breast cancer cell line and AsPC-1 pancreatic cancer cell line) with positive and negative PD-L1 expression by flow cytometry. Next, we performed the in vivo evaluation of 64Cu-NOTA-Durva in murine models of human breast cancer by PET imaging and ex vivo biodistribution. Additionally, mice bearing AsPC-1 tumors were employed as a negative control. Tumor uptake was quantified based on a 3D region-of-interest (ROI) analysis of the PET images and ex vivo biodistribution measurements, and the results were compared against conventional IHC testing. The radiotracer uptake was evident in MDA-MB-231 tumors and showed minimal nonspecific binding, corroborating IHC-derived results. The results of the biodistribution showed that the MDA-MB-231 tumor uptake of 64Cu-NOTA-Durva was much higher than 64Cu-NOTA-IgG (a nonspecific radiolabeled IgG). In Conclusion, 64Cu-labeled Durvalumab PET/CT imaging offers a promising, noninvasive approach to evaluate tumor PD-L1 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA