Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.972
Filtrar
1.
Adv Mater ; : e2405825, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003622

RESUMO

Artificial photosynthesis, harnessing solar energy to convert CO2 into hydrocarbons, presents a promising solution for climate change and energy scarcity. However, photocatalytic CO2 reduction often terminates at the CO stage due to limited electron transfer capacity, hindering the formation of higher-energy hydrocarbons such as CH4. This study introduces, for the first time, an in-situ atmosphere regulation strategy, refined from molecular imprinting methodologies, using dynamically reacting molecules to precisely engineer photocatalytic surface sites for selective *CO adsorption and hydrogenation in CO2-to-CH4 conversion. Specifically, the single-atom Cu catalyst (Cu-SA-CO) is prepared by anchoring single-atom Cu onto defective TiO2 substrates (Cu-SA-CO) under a CO reduction atmosphere. Under illumination, the catalyst exhibited outstanding CH4 selectivity (almost 100%) and productivity (58.5 µmol g-1 h-1). Mechanistic investigations reveal that the coordination environment of the Cu single atoms is significantly affected by dynamically reacting molecules (CO and *CHxO) during synthesis, leading to a Ti-Cu-O structure. The structure, with the synergistic interaction between Cu single atoms and oxygen defects, significantly enhances *CO adsorption and hydrogenation, thereby promoting the formation of methane. This work pioneers the use of dynamically reactive molecules as imprinted templates to tune photocatalytic CO2 reduction selectivity, providing a novel avenue for designing efficient photocatalysts.

2.
Anal Biochem ; 694: 115616, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996900

RESUMO

Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.

3.
Reprod Biol Endocrinol ; 22(1): 80, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997724

RESUMO

BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.


Assuntos
Criopreservação , Transferência Embrionária , Placenta , Criopreservação/métodos , Feminino , Gravidez , Animais , Camundongos , Transferência Embrionária/métodos , Placenta/metabolismo , Embrião de Mamíferos , Implantação do Embrião/genética , Desenvolvimento Fetal/genética , Blastocisto/metabolismo
4.
Trends Genet ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955588

RESUMO

Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.

5.
Water Res ; 262: 122040, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39018579

RESUMO

The ubiquitous chloride ions (Cl-) in water seriously interfere with pollutant oxidation and inevitably generate undesirable chlorinated byproducts. In this study, we report for the first time that a negatively charged molecularly imprinted photocatalyst (MIP) can effectively inhibit Cl- interference and suppress the production of chlorination byproducts (the yield of chloroacetic acid was only 16 % of the bare photocatalyst system) while ensuring efficient degradation of target pollutants, thereby greatly improving the safety of the pollutant degradation process. Taking antibiotics as target pollutant, we investigated the mechanism of action of MIP by comparing the antibiotic degradation pathways, fate of photogenerated active species and production of reactive chlorine species (RCS) in the MIP and bare photocatalyst system. The mechanism by which MIP inhibits Cl- interference was mainly based on a synergy between electrostatic repulsion and steric hindrance induced by the specific capture of antibiotics in imprinted cavity, which effectively suppressed the production of RCS and hindered the participation of RCS in antibiotics degradation. In addition, MIP showed good compatibility with common cations, anions and organic matter, and performed well within a broad pH range in various water environments. Thus, the negatively charged MIP provides a feasible approach for the safe and efficient removal of pollutants in Cl- containing water.

6.
J Biomater Sci Polym Ed ; : 1-16, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965881

RESUMO

In this study, a novel bio-composite material that allow sustained release of plant derived antimicrobial compound was developed for the biomedical applications to prevent the infections caused by microorganisms resistant to commercial antimicrobials agents. With this aim, bacterial cellulose (BC)-p(HEMA) nanocomposite film that imprinted with eugenol (EU) via metal chelated monomer, MAH was prepared. Firstly, characterization studies were utilized by FTIR, SEM and BET analysis. Then antimicrobial assays, drug release studies and in vitro cytotoxicity test were performed. A significant antimicrobial effect against both Gram (+) Staphylococcus aureus and Gram (-) Escherichia coli bacteria and a yeast Candida albicans were observed even in low exposure time periods. When antimicrobial effect of EU compared with commercially used agents, both antifungal and antibacterial activity of EU were found to be higher. Then, sustained drug release studies showed that approximately 55% of EU was released up to 50 h. This result proved the achievement of the molecular imprinting for an immobilization of molecules that desired to release on an area in a long-time interval. Finally, the in vitro cytotoxicity experiment performed with the mouse L929 cell line determined that the synthesized EU-imprinted BC nanocomposite was biocompatible.

7.
J Chromatogr A ; 1730: 465145, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981147

RESUMO

In recent years, target-specific affinity recognition systems based on Fe3O4-based composites have proven to be an effective method for screening natural products. Herbal medicines contain a wide range of natural products and are considered to be a major source for the development of novel drugs. However, the process of isolating and obtaining these bioactive components for the production of novel drugs is complex. Meanwhile, the complexity and diversity of herbal constituents have posed a great challenge to the screening studies of herbal active ingredients. Currently, traditional extraction and screening studies of active ingredients in herbal medicine include extraction and chromatographic separation technology development, serum medicinal chemistry, metabolomics and computerized virtual screening. In order to achieve integrated targeting of Fe3O4 for extraction and separation of natural products from herbs, various Fe3O4-based composites need to be synthesized so that the composites can be further functionalized and modified. Composites such as Fe3O4@SiO2, Fe3O4-based magnetic graphene oxide and Fe3O4-based magnetic carbon nanotubes were used to achieve targeted extraction and isolation of natural products from herbal medicines. The main extraction techniques involved based on these Fe3O4-based composites are molecularly imprinted techniques, immobilized ligand fishing techniques, and cell membrane-coated bionanotechnology methods. This article will present recent advances in the synthesis and modification of Fe3O4 composites and their applications for the extraction of natural products in conjunction with molecular imprinting, immobilization-targeted fishing, and cell-membrane-coated biomimetic techniques, as well as the future goals and challenges of functionalized modification of Fe3O4 composites for the targeted extraction of natural products, like protein overexpression modification, doping of fluorescent substances and genetic engineering development. A deeper understanding of the multi-level, multidisciplinary, and applied studies in materials science and phytochemistry will be provided by this article.

8.
J Hazard Mater ; 476: 135111, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981231

RESUMO

Covalent organic frameworks (COFs) are attractive materials for sample pretreatment due to their tunable structures and functions. However, the precise recognition of contaminant in complex environmental matrices by COFs remains challenging owing to their insufficient specific active sites. Herein, we report Co2+ coordination-assisted molecularly imprinted flexible COF (MI-COF@Co2+) for selective recognition of ochratoxin A (OTA). The MI-COF@Co2+ was prepared via one-step polymerization of 3,3-dihydroxybenzidine, 2,4,6-tris(4-formylphenoxy)- 1,3,5-triazine, Co2+ and template. The flexible units endowed COFs with the self-adaptable ability to regulate the molecular conformation and coordinate with Co2+ to locate the imprinted cavities. The coordination interaction greatly improved the adsorption capacity and selectivity of MI-COF@Co2+ for OTA. The prepared MI-COF@Co2+ was used as solid phase extraction adsorbent for high-performance liquid chromatography determination of OTA with the detection limit of 0.03 ng mL-1 and the relative standard deviation of < 2.5 %. In addition, this method permitted interference-free determination of OTA in real samples with recovery from 89.5 % to 102.8 %. This work provides a simple way to improve the selectivity of COFs for the determination of hazardous compounds in complex environments.

9.
Food Chem ; 459: 140234, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38991449

RESUMO

The coexistence of multiple contaminates in the environment and food is of growing concern due to their extremely hazard as a well-known class I carcinogen, like aflatoxin B1 (AFB1) and benzo(α)pyrene (BaP). AFB1 and BaP are susceptible to coexistence in environmental water and edible oil, posing a significant potential risk to environmental monitoring and food safety. The remaining challenges in detecting multiple contaminates include unsatisfied sensitivity, insufficient targets selectivity, and interferences in complex matrices. Here, we developed dual-template magnetic molecularly imprinted polymers (DMMIPs) for selective extraction of dual targets in complex matrices from the environment and food. The DMMIPs were fabricated by surface imprinting with vinyl-functionalized Fe3O4 as carrier, 5,7-dimethoxycoumarin and pyrene as dummy templates, and methacrylamide as functional monomer. The DMMIPs showed excellent adsorption ability (12.73-15.80 mg/g), imprinting factors (2.01-2.58), and reusability of three adsorption-desorption cycles for AFB1 and BaP. The adsorption mechanism including hydrogen bond, electrostatic interaction and van der Waals force was confirmed by physical characterization and DFT calculation. Applying DMMIPs in magnetic solid phase extraction (MSPE) followed by high-performance liquid chromatography (HPLC) analysis enabled detection limits of 0.134 µg/L for AFB1 and 0.107 µg/L for BaP. Recovery rates for water and edible oil samples were recorded as 86.2%-110.3% with RSDs of 4.1%-11.9%. This approach demonstrates potential for simultaneous identification and extraction of multiple contaminants in environmental and food.

10.
Cureus ; 16(6): e62095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989381

RESUMO

We present a case of a fetus acquiring two different balanced translocations from each parent and subsequent uniparental isodisomy from postzygotic loss of a paternal chromosome. Balanced chromosomal translocations occur in 0.14% of the population and increase the risk of other genetic abnormalities, such as uniparental disomy (UPD) and mosaicism. Preimplantation genetic testing (PGT) can identify some genetic abnormalities. Translocations t(6;21) and t(5;15) have been reported individually but never together in a viable fetus. A non-consanguineous couple who were known carriers of two different balanced translocations conceived via classic in vitro fertilization (IVF). They had a normal PGT completed. Chorionic villus sampling (CVS) revealed that the fetus had received t(6;21) from the mother and t(5;15) from the father. The probability of the fetus acquiring both translocations was 2.8%. CVS also revealed UPD of chromosome 14. Amniocentesis was performed, which was consistent with the CVS in detecting the balanced translocations but provided more information about the UPD, determining that it was a mosaic maternal uniparental isodisomy of chromosome 14 (UPD(14)mat). The couple underwent genetic counseling to discuss the above findings and ultimately decided on dilation and evacuation at 17 weeks of gestation. The likelihood of conception of this fetus and survival past the first trimester is extremely rare. These specific chromosomal translocations and (UPD(14)mat) have never been reported before. This case emphasizes the concomitant nature of imprinted genes, resulting in multiple genetically unique alterations. This report also highlights the limitations of PGT, CVS, and amniocentesis in being reproducibly consistent, which is important to discuss prior to IVF conception.

11.
Methods Mol Biol ; 2842: 167-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012595

RESUMO

In this chapter, we present an experimental protocol to conduct DNA methylation editing experiments, that is, to induce loss or gain of DNA methylation, targeting Dlk1-Dio3 imprinted domain, a well-studied imprinted locus, in ES cells. In this protocol, plasmid vectors expressing the DNA methylation editing tools, combining the CRISPR/dCas9 system and the SunTag system coupled to a DNA methyltransferase or a TET enzyme, are introduced into cells for transient expression. By employing this strategy, researchers can effectively investigate a distinct DNA methylation signature that has an impact on the imprinting status, including gene expression and histone modifications, across the entire domain. We also describe strategies for allele-specific quantitative analyses of DNA methylation, gene expression, and histone modifications and binding protein levels for assessing the imprinting state of the locus.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Edição de Genes , Impressão Genômica , Edição de Genes/métodos , Animais , Camundongos , Loci Gênicos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Iodeto Peroxidase/genética , Alelos , Humanos
12.
Methods Mol Biol ; 2842: 179-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012596

RESUMO

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.


Assuntos
Alelos , Sistemas CRISPR-Cas , Metilação de DNA , Epigenoma , Edição de Genes , Humanos , Edição de Genes/métodos , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas/genética , Epigenômica/métodos , Epigênese Genética
13.
Anal Bioanal Chem ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008069

RESUMO

Quantifying glycated albumin (GA) levels in the blood is crucial for diagnosing diabetes because they strongly correlate with blood glucose concentration. In this study, a biotic/abiotic sandwich assay was developed for the facile, rapid, and susceptible detection of human serum albumin (HSA) and GA. The proposed sandwich detection system was assembled using a combination of two synthetic polymer receptors and natural antibodies. Molecularly imprinted polymer nanogels (MIP-NGs) for HSA (HSA-MIP-NGs) were used to mimic capture antibodies, whereas antibodies for HSA or GA were used as primary antibodies and fluorescent signaling MIP-NGs for the Fc domain of IgG (F-Fc-MIP-NGs) were used as a secondary antibody mimic to indicate the binding events. The HSA/anti-HSA/F-Fc-MIP-NGs complex, formed by incubating HSA and anti-HSA antibodies with F-Fc-MIP-NGs, was captured by HSA-MIP-NGs immobilized on the chips for fluorescence measurements. The analysis time was less than 30 min, and the limit of detection was 15 pM. After changing the anti-HSA to anti-GA (monoclonal antibody), the fluorescence response toward GA exceeded that of HSA, indicating successful GA detection using the proposed sandwich detection system. Therefore, the proposed system could change the detection property by changing a primary antibody, indicating that this system can be applied to various target proteins and, especially, be a powerful approach for facile and rapid analysis methods for proteins with structural similarity.

14.
Nanomaterials (Basel) ; 14(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998727

RESUMO

Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(-)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(-)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.

15.
Nano Lett ; 24(28): 8763-8769, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976835

RESUMO

Lysine is one of the most abundant residues on the surface of proteins and its site-selective functionalization is extremely challenging. The existing methods of functionalization rely on differential reactivities of lysine on a protein, making it impossible to label less reactive lysines selectively. We here report polymeric nanoparticles that mimic enzymes involved in the posttranslational modifications of proteins that distinguish the chemical and supramolecular contexts of a lysine and deliver the labeling reagent precisely to its ε amino group. The nanoparticles are prepared through molecular imprinting of cross-linkable surfactant micelles, plus an in situ, on-micelle derivatization of the peptide template prior to the imprinting. The procedures encode the polymeric nanoparticles with all the supramolecular information needed for sequence identification and precise labeling, allowing single-site functionalization of a predetermined lysine on the target protein in a mixture.


Assuntos
Lisina , Nanopartículas , Proteínas , Lisina/química , Nanopartículas/química , Proteínas/química , Micelas , Impressão Molecular/métodos , Polímeros/química , Peptídeos/química , Processamento de Proteína Pós-Traducional
16.
Fertil Steril ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825304

RESUMO

OBJECTIVE: To assess whether the use of assisted reproductive technology (ART) therapy for conception is associated with imprinting disorders in children and the impact of parental factors related to infertility. DESIGN: A nationwide register-based cohort study. SETTING: Swedish national registers and nationwide quality IVF register. PATIENT(S): All liveborn singletons in Sweden (N = 2,084,127) between 1997 and 2017 with follow-up to December 31, 2018. INTERVENTION(S): The use of specific methods implemented in ART. MAIN OUTCOME MEASURE(S): The International Classification of Diseases version 10 was used to identify three distinct imprinting disorder groups: Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS), and Silver-Russell syndrome (SRS), as well as central precocious puberty. The Cox model combined with inverse probability treatment weights was used to estimate the weighted hazard ratio (wHR) with a 95% confidence interval (CI), accounting for multiple confounders. RESULT(S): A total of 1,044 children were diagnosed with the disorders of interest, and 52 of them were conceived using ART therapy. The overall risk of being diagnosed with any of the studied imprinting disorders was elevated in children conceived using ART therapy compared with all other children (HR, 1.84; 95% CI, 1.38-2.45). After adjusting for parental background factors, the association was partially attenuated (wHR, 1.50; 95% CI, 0.97-2.32), but remained in the weighted comparison restricted to children of couples with known infertility (wHR, 1.52; 95% CI, 1.05-2.21). For the specific diagnoses of PWS/SRS, and BWS compared with children of couples with known infertility, children conceived with ART therapy showed a small excess risk, which could not be distinguished from the null (wHR, 1.56; 95% CI, 0.93-2.62 and 1.80; 95% CI, 0.99-3.28, respectively). Further subgroup analysis showed that the combined use of intracytoplasmic sperm injection and cryopreserved embryos was associated with a higher risk of both PWS/SRS (wHR, 4.60; 95% CI, 1.72-12.28) and BWS (wHR, 6.69; 95% CI, 2.09-21.45). The number of central precocious puberty cases in children conceived using ART therapy was too small (N = 3) to make any meaningful inference. CONCLUSION(S): The combined use of intracytoplasmic sperm injection and cryopreserved embryos was associated with small elevated risks of PWS/SRS, and BWS in children, independent of parental factors related to infertility.

17.
Epigenetics Chromatin ; 17(1): 20, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840164

RESUMO

BACKGROUND: Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization. We also identified a 118-bp sequence within the H19 ICR that is responsible for post-fertilization imprinted methylation. Two mutations, one in the five RCTG motifs and the other a 36-bp deletion both in the 118-bp segment, caused complete and partial loss, respectively, of methylation following paternal transmission in each transgenic mouse. Interestingly, these mutations overlap with the binding site for the transcription factor Kaiso, which is reportedly involved in maintaining paternal methylation at the human H19 ICR (IC1) in cultured cells. In this study, we investigated if Kaiso regulates imprinted DNA methylation of the H19 ICR in vivo. RESULTS: Neither Kaiso deletion nor mutation of Kaiso binding sites in the 118-bp region affected DNA methylation of the mouse H19 ICR transgene. The endogenous mouse H19 ICR was methylated in a wild-type manner in Kaiso-null mutant mice. Additionally, the human IC1 transgene acquired imprinted DNA methylation after fertilization in the absence of Kaiso. CONCLUSIONS: Our results indicate that Kaiso is not essential for either post-fertilization imprinted DNA methylation of the transgenic H19 ICR in mouse or for methylation imprinting of the endogenous mouse H19 ICR.


Assuntos
Metilação de DNA , Impressão Genômica , RNA Longo não Codificante , Fatores de Transcrição , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Feminino , Sítios de Ligação , Camundongos Transgênicos , Proteínas Repressoras
18.
Virology ; 597: 110119, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850895

RESUMO

Highly pathogenic avian influenza (HPAI) viruses remain a major threat to both the poultry industry and human public health, and these viruses continue to spread worldwide. In this study, mice were vaccinated with COBRA H2, H5, and H7 hemagglutinin (HA) and two neuraminidase (NA) proteins, N1 and N2. Vaccinated mice were fully protected against lethal challenge with H5N6 influenza virus. Sera collected after vaccination showed cross-reactive IgG antibodies against a panel of wild-type H2, H5, and H7 HA proteins, and N1 and N2 NA proteins. Mice with pre-existing immunity to H1N1 and H3N2 influenza viruses that were subsequently vaccinated with COBRA HA/NA vaccines had enhanced anti-HA stem antibodies compared to vaccinated mice without pre-existing immunity. In addition, sera collected after vaccination had hemagglutinin inhibitory activity against a panel of H2Nx, H5Nx, and H7Nx influenza viruses. These protective antibodies were maintained up for up to 4 months after vaccination.

19.
Chemistry ; : e202401232, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848047

RESUMO

We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies. Then, a small library of MIP NGs imprinted with the α2,6-linked template was synthesized and tested by mobility shift Affinity Capillary Electrophoresis (msACE) to rapidly assess an affinity ranking. Finally, the best monomer o-acrylamido PBA was selected for the synthesis of polymers targeting both sialyllactoses. The resulting MIP NGs display an affinity constant ≈ 106 M-1 and selectivity towards imprinted glycans. This general procedure could be applied to any non-modified carbohydrate template possessing a reducing end.

20.
Hum Mol Genet ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868925

RESUMO

We have recently discovered that the so-called subcortical maternal complex (SCMC) proteins composing of cytoplasmic lattices are destabilized in Uhrf1 knockout murine fully grown oocytes (FGOs). Here we report that human UHRF1 interacts with human NLRP5 and OOEP, which are core components of the SCMC. Moreover, NLRP5 and OOEP interact with DPPA3, which is an essential factor for exporting UHRF1 from the nucleus to the cytoplasm in oocytes. We identify that NLRP5, not OOEP, stabilizes UHRF1 protein in the cytoplasm utilizing specifically engineered cell lines mimicking UHRF1 status in oocytes and preimplantation embryos. Further, UHRF1 is destabilized both in the cytoplasm and nucleus of Nlrp5 knockout murine FGOs. Since pathogenic variants of the SCMC components frequently cause multilocus imprinting disturbance and UHRF1 is essential for maintaining CpG methylation of imprinting control regions during preimplantation development, our results suggest possible pathogenesis behind the disease, which has been a long-standing mystery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA