Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 100: 108094, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34508942

RESUMO

This work evaluated the immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by S. aureus. Swiss mice were divided into 3 groups (n = 12/group): non-inoculated (Control group); inoculated with S. aureus (Sa group); inoculated with S. aureus and treated with Cramoll (Sa + Cramoll group). In each animal, one lesion (64 mm2) was induced on the back and contaminated with S. aureus (~4.0 × 106 CFU/wound). The treatment with Cramoll (5 µg/animal/day) started 1-day post-infection (dpi) and extended for 10 days. Clinical parameters (wound size, inflammatory aspects, etc.) were daily recorded; while cytokines levels, bacterial load and histological aspects were determined in the cutaneous tissue at 4th dpi or 11th dpi. The mice infected with S. aureus exhibited a delay in wound contraction and the highest inflammatory scores. These effects were impaired by the treatment with Cramoll which reduced the release of key inflammatory mediators (TNF-α, NO, VEGF) and the bacterial load at wound tissue. Histological evaluations showed a restauration of skin structures in the animals treated with Cramoll. Taken together, these results provide more insights about the healing and immunomodulatory properties of Cramoll and suggest this lectin as a lead compound for treatment of wound infection.


Assuntos
Antibacterianos/farmacologia , Fabaceae , Agentes de Imunomodulação/farmacologia , Lectinas de Plantas/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/prevenção & controle , Animais , Antibacterianos/isolamento & purificação , Carga Bacteriana , Modelos Animais de Doenças , Fabaceae/química , Interações Hospedeiro-Patógeno , Agentes de Imunomodulação/isolamento & purificação , Camundongos , Óxido Nítrico/metabolismo , Lectinas de Plantas/isolamento & purificação , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/imunologia , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia
2.
Toxicol In Vitro ; 74: 105158, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33823240

RESUMO

BACKGROUND: Leishmaniasis is a parasitosis with a wide incidence in developing countries. The drugs which are indicated for the treatment of this infection usually are able to promote high toxicity. PURPOSE: A combination of limonene and carvacrol, monoterpenes present in plants with antiparasitic activity may constitute an alternative for the treatment of these diseases. METHODS: In this study, the antileishmania activity against Leishmania major, cytotoxicity tests, assessment of synergism, parasite membrane damage tests as well as molecular docking and immunomodulatory activity of limonene-carvacrol (Lim-Car) combination were evaluated. RESULTS: The Lim-Car combination (5:0; 1:1; 1:4; 2:3; 3:2; 4:1 and 0:5) showed potential antileishmania activity, with mean inhibitory concentration (IC50) ranging from 5.8 to 19.0 µg.mL-1. They demonstrated mean cytotoxic concentration (CC50) ranging from 94.1 to 176.0 µg.mL-1, and did not show significant hemolytic effect. In the investigation of synergistic interaction, the 4:1 Lim-Car combination showed better fractional inhibitory concentration (FIC) index as well as better activity on amastigotes and IS. The samples caused considerable damage to the parasite membrane this monoterpene activity seems to be more related to Trypanothione Reductase (TryR) enzyme interaction, demonstrated in the molecular docking assay. In addition, the 4:1 Lim-Car combination stimulated macrophage activation, and showed at was the best association, with reduction of infection and infectivity of parasitized macrophages. CONCLUSION: The 4:1 Lim-Car combination appears to be a promising candidate as a monotherapeutic antileishmania agent.


Assuntos
Antiprotozoários/toxicidade , Cimenos/toxicidade , Fatores Imunológicos/toxicidade , Leishmania major/efeitos dos fármacos , Limoneno/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Combinação de Medicamentos , Sinergismo Farmacológico , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Ovinos
3.
Drug Dev Res ; 82(4): 469-473, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33496060

RESUMO

Despite vigorous efforts, the COVID-19 pandemic continues to take a toll on the global health. The contemporary therapeutic regime focused on the viral spike proteins, viral 3CL protease enzyme, immunomodulation, inhibition of viral replication, and providing a symptomatic relief encouraged the repurposing of drugs to meet the urgency of treatment. Similarly, the representative drugs that proved beneficial to alleviate SARS-CoV-1, MERS-CoV, HIV, ZIKV, H1N1, and malarial infection in the past presented a sturdy candidature for ameliorating the COVID-19 therapeutic doctrine. However, most of the deliberations for developing effective pharmaceuticals proved inconsequential, thereby encouraging the identification of new pathways, and novel pharmaceuticals for capping the COVID-19 infection. The COVID-19 contagion encompasses a burst release of the cytokines that increase the severity of the infection mainly due to heightened immunopathogenicity. The pro-inflammatory metabolites, COX-2, cPLA2, and 5-LOX enzymes involved in their generation, and the substrates that instigate the origination of the innate inflammatory response therefore play an important role in intensifying and worsening of the tissue morbidity related to the coronavirus infection. The deployment of representative drugs for inhibiting these overexpressed immunogenic pathways in the tissues invaded by coronaviruses has been a matter of debate since the inception of the pandemic. The effectiveness of NSAIDs such as Aspirin, Indomethacin, Diclofenac, and Celecoxib in COVID-19 coagulopathy, discouraging the SARS viral replication, the inflammasome deactivation, and synergistic inhibition of H5N1 viral infection with representative antiviral drugs respectively, have provided a silver lining in adjuvant COVID-19 therapy. Since the anti-inflammatory NSAIDs and COXIBs mainly function by reversing the COX-2 overexpression to modulate the overproduction of pro-inflammatory cytokines and chemokines, these drugs present a robust treatment option for COVID-19 infection. This commentary succinctly highlights the various claims that support the status of immunomodulatory NSAIDs, and COXIBs in the adjuvant COVID-19 therapy.


Assuntos
COVID-19/enzimologia , Fatores Imunológicos/uso terapêutico , Prostaglandina-Endoperóxido Sintases/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Quimioterapia Adjuvante/métodos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Humanos , Fatores Imunológicos/farmacologia , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/fisiologia , Tratamento Farmacológico da COVID-19
4.
J Cancer ; 5(9): 765-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368677

RESUMO

Interleukin 7 and 15 are considered powerful pro-inflammatory cytokines, they have the ability to destabilize chromosomes and induce tumorigenesis. Additionally, they can control malignancy proliferation by influencing the tumor microenvironment and immune system. Immunotherapy has been proposed as a treatment modality for malignancy for over a decade; the exact mechanisms of action and pathways are still under investigation. Interleukin 7 and 15 have been extensively investigated in hematological malignancies since their mode of action influences the stimulation of the immune system in a more direct way than other malignancies such as lung, melanoma, and breast, renal and colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA