Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biologicals ; 88: 101794, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369471

RESUMO

Animal (in vivo) potency tests have been utilized for over a century in support of vaccine development and for quality testing. This is a legacy of the best science at the time of their introduction. Advances in knowledge and technology, however, have provided opportunities to utilize more sensitive assays during development and replace legacy animal tests with in vitro alternatives. This coupled with initiatives such as replacement, reduction, and refinement (the 3-R's) and quality by design (QbD) have brought industry and regulators together in the introduction of advanced vaccine control strategies. This article examines historical and current uses of animals in vaccines technical development and control, and their replacement with in vitro alternatives from a risk point of view. An overarching risk is that a vaccine tested with an alternative potency assay fails to protect its target recipient. This can be addressed from the perspective of the assay's association with the vaccine mechanism of action, and the rules used to introduce the vaccine into the patient population (e.g., specifications). Commonly understood concepts such as analytical precision play a role in risk evaluation based on its impact on the sensitivity of a test to detect meaningful product changes caused by variations in manufacture or over a vaccine's shelf life. This should be considered when evaluating solutions such as the reduction of multi-concentration (or dilution) in vivo assays to a single concentration test. While the use of animals in vaccine development will not go away all together, the paradigm must shift from in vivo tests to in vivo models. To help ensure success, principles and practices related to introduction of in vitro alternatives require global collaboration among industry, regulators, pharmacopeias, and supporting organizations.

2.
Front Microbiol ; 15: 1455839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328913

RESUMO

Establishing the context: Intestinal dysbiosis is a significant concern among dog owners, and the gut health of pets is an emerging research field. In this context, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with in vivo data. Stating the purpose/introducing the study: The current study presents a further application of this model by using amoxicillin and clavulanic acid to induce dysbiosis, aiming to provoke changes in microbial community and metabolite production, which are well-known markers of the disease in vivo. Describing methodology: Following the induction of dysbiosis, prebiotic supplementation was tested to investigate the potential for microbiota recovery under different dietary conditions. Presenting the results: The results showed that antibiotic stimulation in the SCIME™ model can produce significant changes in microbial communities and metabolic activity, including a decrease in microbial richness, a reduction in propionic acid production, and alterations in microbial composition. Additionally, changes in ammonium and butyric acid levels induced by the tested diets were observed. Discussing the findings: This alteration in microbial community and metabolites production mimicks in vivo canine dysbiosis patterns. A novel dynamic in vitro model simulating canine antibiotic-induced dysbiosis, capable of reproducing microbial and metabolic changes observed in vivo, has been developed and is suitable for testing the effects of nutritional changes.

3.
Aquat Toxicol ; 256: 106411, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716651

RESUMO

The bioavailability of metal complexes is poorly understood. To evaluate bioavailability and toxicity of neutral and charged complexes as well as free metal ions, Visual Minteq, a chemical equilibrium model, was used to design media containing different metal species. Two non-essential (silver and cadmium) and two essential (copper and zinc) metals were selected. The rainbow trout (Oncorhynchus mykiss) gut cell line (RTgutGC) was used to investigate bioavailability, bioreactivity and toxicity of the different metal species. Toxicity was measured using a multiple endpoint cytotoxicity assay, bioavailability by measuring intracellular metal concentration, and bioreactivity by quantification of mRNA level of the metal responsive genes, metallothionein (MT), glutathione reductase (GR) and zinc transporter 1 (ZnT1). Speciation calculations showed that silver and cadmium preferentially bind chloride, copper phosphate and bicarbonate, and zinc remained primarily as a free ion. Cysteine avidly complexed with all metals reducing toxicity, bioavailability and bioreactivity. Silver and copper toxicity was not affected by inorganic metal speciation, whereas cadmium and zinc toxicity was decreased by chloride complexation. Moreover, reduction of calcium concentration in the medium increased toxicity and bioavailability of cadmium and zinc. Bioavailability of silver and zinc was reduced by low chloride while cadmium bioavailability was increased by low chloride and in presence of bicarbonate. Copper bioavailability was not affected by the medium composition. Cadmium and silver were more bioreactive, independently from the medium composition, in comparison to copper and zinc (i.e., higher induction of MT and GR). Cadmium was the only metal able to induce MT in presence of cysteine. ZnT1 was induced by cadmium in low-chloride, by zinc in low-chloride low-calcium and by cadmium and copper in the bicarbonate media. Overall, this study demonstrates that metal complexation alone is not sufficient to explain metal toxicity, and that anion exchange mechanisms play a role in metal uptake and bioreactivity.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Cobre/metabolismo , Cádmio/metabolismo , Cálcio/metabolismo , Prata , Cloretos/metabolismo , Cisteína/metabolismo , Bicarbonatos , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Zinco/metabolismo , Oncorhynchus mykiss/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo
4.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806178

RESUMO

Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds' screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia
5.
J Appl Toxicol ; 42(7): 1230-1252, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088439

RESUMO

As nanoparticles (NPs) can access the brain and impact on CNS function, novel in vitro models for the evaluation of NPs-induced neurotoxicity are advocated. Three-dimensional spheroids of primary neuron-like cells (hNLCs) of human origin have been generated, from differentiation of human umbilical cord mesenchymal stem cells (MSCs). The study evaluated Fe3 O4 NP impact on the differentiation process by applying the challenge at complete 3D hNLC spheroid formation (after 4 days, T4) or at beginning of neurogenic induction/simultaneously 3D forming (T0). Different endpoints were monitored over time (up to 10 days): spheroid growth, size, morphology, ATP, cell death, neuronal markers (ß-Tub III, MAP-2, and NSE), NP uptake. At T0 application, a marked concentration- and time-dependent cell mortality occurred: effect started early (day 2) and low concentration (1 µg/ml) and exacerbated (80% mortality) after prolonged time (day 6) and increased concentrations (50 µg/ml). ATP was strikingly affected. All neuronal markers were downregulated, and spheroid morphology altered in a concentration-dependent manner (from ≥5 µg/ml) after day 2. Fe3 O4 NPs applied at complete 3D formation (T4) still induced adverse effects although less severe: cell mortality (20-60%) and ATP content decrease (10-40%) were observed in a concentration-dependent manner (from ≥ 5 µg/ml). A neuronal-specific marker effect and spheroid size reduction from 25 µg/ml without morphology alteration were evidenced. This finding provides additional information on neurotoxic effects of Fe3 O4 NPs in a new 3D hNLC spheroid model derived from MSCs that could find a consistent application as in a testing strategy serving in first step hazard identification for correct risk assessment.


Assuntos
Nanopartículas de Magnetita , Células-Tronco Mesenquimais , Trifosfato de Adenosina/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Nanopartículas de Magnetita/toxicidade , Neurônios , Esferoides Celulares
6.
Life (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36676057

RESUMO

The study of adipogenesis is essential for understanding and treating obesity, a multifactorial problem related to body fat accumulation that leads to several life-threatening diseases, becoming one of the most critical public health problems worldwide. In this review, we propose to provide the highlights of the adipogenesis study based on in vitro differentiation of human mesenchymal stem cells (hMSCs). We list in silico methods, such as molecular docking for identification of molecular targets, and in vitro approaches, from 2D, more straightforward and applied for screening large libraries of substances, to more representative physiological models, such as 3D and bioprinting models. We also describe the development of physiological models based on microfluidic systems applied to investigate adipogenesis in vitro. We intend to identify the main alternative models for adipogenesis evaluation, contributing to the direction of preclinical research in obesity. Future directions indicate the association of in silico and in vitro techniques to bring a clear picture of alternative methods based on adipogenesis as a tool for obesity research.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34798932

RESUMO

Nanoclays and graphene oxide nanomaterials represent a class of materials sharing similar shapes constituted of high aspect ratio platelets. The increased production of these materials for various industrial applications increases the risk of occupational exposure, consequently with elevated risk of adverse reactions and development of pulmonary diseases, including lung cancer. In this study, pro-inflammatory responses and genotoxicity were assessed in alveolar epithelial cells (A549) and activated THP-1 macrophages (THP-1a) after exposure to three nanoclays; a pristine (Bentonite) and two surface modified (benzalkonium chloride-coated Nanofil9, and dialkyldimethyl-ammonium-coated NanofilSE3000); graphene oxide (GO) and reduced graphene oxide (r-GO) nanomaterials. The pro-inflammatory response in terms of IL-8 expression was strongest in cells exposed to Bentonite, whereas surface modification resulted in decreased toxicity in both cell lines when exposed to Nanofil9 and NanofilSE3000. GO and r-GO induced a pro-inflammatory response in A549 cells, while no effect was detected with the two nanomaterials on THP-1a cells. The pro-inflammatory response was strongly correlated with in vivo inflammation in mice after intra-tracheal instillation when doses were normalized against surface area. Genotoxicity was assessed as DNA strand breaks, using the alkaline comet assay. In A549 cells, an increase in DNA strand breaks was detected only in cells exposed to Bentonite, whereas Bentonite, NanofilSE3000 and GO caused an increased level of genotoxicity in THP-1a cells. Genotoxicity in THP-1a cells was concordant with the DNA damage in bronchoalveolar lavage fluid cells following 1 and 3 days after intra-tracheal instillation in mice. In conclusion, this study shows that surface modification of pristine nanoclays reduces the inflammatory and genotoxic response in A549 and THP-1a cells, and these in vitro models show comparable toxicity to what seen in previous mouse studies with the same materials.


Assuntos
Argila , Dano ao DNA , Grafite , Nanoestruturas , Células A549 , Animais , Bentonita , Grafite/toxicidade , Humanos , Pulmão , Camundongos , Nanoestruturas/toxicidade , Células THP-1
8.
Part Fibre Toxicol ; 18(1): 25, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301283

RESUMO

BACKGROUND: Multi-walled carbon nanotubes (MWCNT) have received attention due to extraordinary properties, resulting in concerns for occupational health and safety. Costs and ethical concerns of animal testing drive a need for in vitro models with predictive power in respiratory toxicity. The aim of this study was to assess pro-inflammatory response (Interleukin-8 expression, IL-8) and genotoxicity (DNA strand breaks) caused by MWCNT with different physicochemical properties in different pulmonary cell models and correlate these to previously published in vivo data. Seven MWCNT were selected; two long/thick (NRCWE-006/Mitsui-7 and NM-401), two short/thin (NM-400 and NM-403), a pristine (NRCWE-040) and two surface modified; hydroxylated (NRCWE-041) and carboxylated (NRCWE-042). Carbon black Printex90 (CB) was included as benchmark material. Human alveolar epithelial cells (A549) and monocyte-derived macrophages (THP-1a) were exposed to nanomaterials (NM) in submerged conditions, and two materials (NM-400 and NM-401) in co-cultures of A549/THP-1a and lung fibroblasts (WI-38) in an air-liquid interface (ALI) system. Effective doses were quantified by thermo-gravimetric-mass spectrometry analysis (TGA-MS). To compare genotoxicity in vitro and in vivo, we developed a scoring system based on a categorization of effects into standard deviation (SD) units (< 1, 1, 2, 3 or 4 standard deviation increases) for the increasing genotoxicity. RESULTS: Effective doses were shown to be 25 to 53%, and 21 to 57% of the doses administered to A549 and THP-1a, respectively. In submerged conditions (A549 and THP-1a cells), all NM induced dose-dependent IL-8 expression. NM-401 and NRCWE-006 caused the strongest pro-inflammatory response. In the ALI-exposed co-culture, only NM-401 caused increased IL-8 expression, and no DNA strand breaks were observed. Strong correlations were found between in vitro and in vivo inflammation when doses were normalized by surface area (also proxy for diameter and length). Significantly increased DNA damage was found for all MWCNT in THP-1a cells, and for short MWCNT in A549 cells. A concordance in genotoxicity of 83% was obtained between THP-1a cells and broncho-alveolar lavaged (BAL) cells. CONCLUSION: This study shows correlations of pro-inflammatory potential in A549 and THP-1a cells with neutrophil influx in mice, and concordance in genotoxic response between THP-1a cells and BAL cells, for seven MWCNT.


Assuntos
Nanotubos de Carbono , Células A549 , Células Epiteliais Alveolares , Animais , Dano ao DNA , Humanos , Pulmão , Camundongos , Nanotubos de Carbono/toxicidade
9.
J Biomed Mater Res B Appl Biomater ; 109(3): 358-376, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929881

RESUMO

Device manufacturers and regulatory agencies currently utilize expensive and often inconclusive in vivo vascular implant models to assess implant material thrombogenicity. We report an in vitro thrombogenicity assessment methodology where test materials (polyethylene, Elasthane™ 80A polyurethane, Pebax®), alongside positive (borosilicate glass) and negative (no material) controls, were exposed to fresh human blood, with attention to common blood-contact use conditions and the variables: material (M), material surface modification (SM) with heparin, model (Mo), time (T), blood donor (D), exposure ratio (ER; cm2 material/ml blood), heparin anticoagulation (H), and blood draw/fill technique (DT). Two models were used: (1) a gentle-agitation test tube model and (2) a pulsatile flow closed-loop model. Thrombogenicity measurements included thrombin generation (thrombin-antithrombin complex [TAT] and human prothrombin fragment F1.2), platelet activation (ß-thromboglobulin), and platelet counts. We report that: (a) thrombogenicity was strongly dependent (p < .0001) on M, H, and T, and variably dependent (p < .0001 - > .05) on Mo, SM, and D (b) differences between positive control, test, and negative control materials became less pronounced as H increased from 0.6 to 2.0 U/ml, and (c) in vitro-to-in vivo case comparisons showed consistency in thrombogenicity rankings on materials classified to be of low, moderate, and high concern. In vitro methods using fresh human blood are therefore scientifically sound and cost effective compared to in vivo methods for screening intravascular materials and devices for thrombogenicity.


Assuntos
Materiais Biocompatíveis/química , Coagulação Sanguínea , Plaquetas/metabolismo , Teste de Materiais , Ativação Plaquetária , Trombose , Feminino , Humanos , Masculino , Estudo de Prova de Conceito , Trombose/metabolismo , Trombose/prevenção & controle
10.
Artigo em Inglês | MEDLINE | ID: mdl-32502601

RESUMO

The role of metal speciation on metal bioavailability, bio-reactivity and toxicity at the fish intestine is poorly understood. To investigate these processes, we used an in vitro model of the rainbow trout (Oncorhynchus mykiss) intestine, the RTgutGC cell line. Cells were exposed to two essential metals (copper and zinc) and two non-essential metals (cadmium and silver) in a medium of well-defined composition, which allowed the determination of metal speciation in solution. Concentrations resulting in a 50% cell viability reduction (EC50) were measured using a viability assay based on two endpoints: metabolic activity and membrane integrity. Metal bioavailability and bio-reactivity was studied at non-toxic (300 nM all metals) and toxic (EC10; Ag-0.6, Cu-0.9, Cd-3, and Zn-9 µM) concentrations. Bioavailability (i.e. intracellular metal accumulation) was determined by ICP-MS, while bio-reactivity (i.e. induction of a metal specific transcriptional response) was determined by measuring the mRNA levels of a known biomarker of metal exposure (i.e. metallothionein) and of copper and zinc transporters (i.e. ATP7A and ZnT1). Dominant metal species in the exposure medium were Zn2+, CuHPO4, CdCl+, and AgCl2- respectively for Zn, Cu, Cd, and Ag. The EC50s showed the metal toxicity hierarchy: Ag > Cu > Cd > Zn. In RTgutGC cells, essential metal homeostasis was tightly regulated while non-essential metals accumulated more readily. Non-essential metals were also more bio-reactive inducing higher MT and ZnT1 mRNA levels. Taken together these findings indicate that metal toxicity in RTgutGC cannot solely be explained by extracellular metal speciation but requires the evaluation of metal bioavailability and bio-reactivity.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Oncorhynchus mykiss/fisiologia , Prata/toxicidade , Zinco/toxicidade , Animais , Disponibilidade Biológica , Cádmio/farmacocinética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Cobre/farmacocinética , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Metalotioneína/genética , Metalotioneína/metabolismo , Prata/metabolismo , Zinco/farmacocinética
11.
Toxins (Basel) ; 11(7)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319496

RESUMO

Whooping cough is caused by the bacterium Bordetella pertussis. There are currently two types of vaccines that can prevent the disease; whole cell vaccines (WCV) and acellular vaccines (ACV). The main virulence factor produced by the organism is pertussis toxin (PTx). This toxin is responsible for many physiological effects on the host, but it is also immunogenic and in its detoxified form is the main component of all ACVs. In producing toxoid for vaccines, it is vital to achieve a balance between sufficiently detoxifying PTx to render it safe while maintaining enough molecular structure that it retains its protective immunogenicity. To ensure that the first part of this balancing act has been successfully achieved, assays are required to accurately measure residual PTx activity in ACV products accurately. Quality control assays are also required to ensure that the detoxification procedures are robust and stable. This manuscript reviews the methods that have been used to achieve this aim, or may have the potential to replace them, and highlights their continuing requirement as vaccines that induce a longer lasting immunity are developed to prevent the re-occurrence of outbreaks that have been observed recently.


Assuntos
Toxina Pertussis/análise , Vacina contra Coqueluche/análise , Animais , Bioensaio , Humanos , Toxina Pertussis/toxicidade
12.
J Pharmacol Toxicol Methods ; 88(Pt 2): 130-139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28827132

RESUMO

Human skin is located at the outermost part of the body, and various cosmetics and chemicals that may come in contact with human skin need to be evaluated for their potential to cause irritation. Until recently, the Draize test was considered the standard method for skin irritation; however, this technique has disadvantages such as the need to sacrifice many rabbits and subjective scoring. Thus, to contribute to the development of an animal-free alternative skin irritation test, we investigated the cytotoxicity and inflammatory response to standard skin irritants in SV40 large T antigen-transformed human epidermal keratinocyte 2 cells (SV-HEK2 cells). In this study, we established an SV-HEK2 cell line immortalized by SV40 large T antigen (SV40 T) and characterized the inherent morphological and cytological properties. We next used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or neutral red uptake (NRU) assays of cell viability to investigate the optimal experimental conditions for determining SV-HEK2 cell viability after exposure to sodium dodecyl sulfate at 6.25×10-3% to 1×10-1% as a standard skin irritant. We then examined the viability of SV-HEK2 cells in response to five skin irritants (benzalkonium chloride, isopropanol, sodium dodecyl sulfate, Triton X-100 and Tween20) at 5×10-3% to 1×10-1% by MTT or NRU assay. Finally, we estimated the level of cytokines secretion in response to stimulation by skin irritants in SV-HEK2 cells. The results revealed that SV-HEK2 cells responded well to skin irritants in a concentration-dependent manner and that there was good correlation between irritant concentration and cytotoxicity (or cytokine secretion) when cells were exposed to skin irritants for 10min at room temperature (RT) using an MTT assay. Overall, these findings suggest that SV-HEK2 cells could be a good alternative in vitro model for skin irritation tests.


Assuntos
Alternativas aos Testes com Animais/normas , Epiderme/efeitos dos fármacos , Irritantes/toxicidade , Queratinócitos/efeitos dos fármacos , Alternativas aos Testes com Animais/métodos , Compostos de Benzalcônio/toxicidade , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Epiderme/patologia , Epiderme/fisiologia , Humanos , Queratinócitos/patologia , Queratinócitos/fisiologia , Octoxinol/toxicidade , Conservantes Farmacêuticos/toxicidade , Testes Cutâneos/métodos , Testes Cutâneos/normas , Tensoativos/toxicidade
13.
Vaccine ; 35(8): 1152-1160, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28129894

RESUMO

Detoxified pertussis toxin (pertussis toxoid) is a major antigen in acellular pertussis vaccines. Testing these vaccines on the presence of residual pertussis toxin (PTx) and reversion to toxicity is performed by the regulatory required in vivo Histamine Sensitization test (HIST). Lack of mechanistic understanding of the HIST, technical handicaps and animal welfare concerns, have promoted the development of alternative methods. As the majority of the cellular effects of PTx depend on its ability to activate intracellular pathways involving cAMP, the in vitro cAMP-PTx assay was developed. Although this assay could be used to detect PTx activity, it lacked sensitivity and robustness for use in a quality control setting. In the present study, novel reporter cell lines (CHO-CRE and A10-CRE) were generated that stably express a reporter construct responsive to changes in intracellular cAMP levels. These reporter cell lines were able to detect PTx in a concentration-dependent manner when combined with fixed amounts of forskolin. The CHO-CRE cell line enabled detection of PTx in the context of a multivalent vaccine containing aP, with a sensitivity equal to the HIST. However, the sensitivity of the A10-CRE cells was insufficient for this purpose. The experiments also suggest that the CHO-CRE reporter cell line might be suitable for assessment of cellular effects of PTd reverted to PTx. The CHO-CRE reporter cell line provides a platform that meets the criteria for specificity and sensitivity and is a promising in vitro model with potential to replace the HIST.


Assuntos
Bioensaio , Efeito Fundador , Toxina Pertussis/análise , Vacina contra Coqueluche/química , Elementos de Resposta , Animais , Células CHO , Linhagem Celular , Colforsina/farmacologia , Cricetulus , AMP Cíclico/metabolismo , Genes Reporter , Histamina/metabolismo , Histamina/farmacologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Vacina contra Coqueluche/análise , Ratos , Sensibilidade e Especificidade , Vacinas Acelulares
14.
Artigo em Inglês | MEDLINE | ID: mdl-27233534

RESUMO

Assessment of eye irritation potential is important to human safety, and it is necessary for various cosmetics and chemicals that may contact the human eye. Until recently, the Draize test was considered the standard method for estimating eye irritation, despite its disadvantages such as the need to sacrifice many rabbits for subjective scoring. Thus, we investigated the cytotoxicity and inflammatory response to standard eye irritants using SV40 T-transformed human corneal epithelial (SHCE) cells as a step toward development of an animal-free alternative eye irritation test. MTT and NRU assays of cell viability were performed to investigate the optimal experimental conditions for SHCE cell viability when cells were exposed to sodium dodecyl sulfate (SDS) as a standard eye irritant at 6.25×10(-3) to 1×10(-1)%. Additionally, cell viability of SHCE cells was examined in response to six potential eye irritants, benzalkonium chloride, dimethyl sulfoxide, isopropanol, SDS, Triton X-100 and Tween 20 at 5×10(-3) to 1×10(-1)%. Finally, we estimated the secretion level of cytokines in response to stimulation by eye irritants in SHCE cells. SHCE cells showed a good response to potential eye irritants when the cells were exposed to potential irritants for 10min at room temperature (RT), and cytokine production increased in a concentration-dependent manner, indicating that cytotoxicity and cytokine secretion from SHCE cells may be well correlated with the concentrations of irritants. Taken together, these results suggest that SHCE cells could be an excellent alternative in vitro model to replace in vivo animal models for eye irritation tests.


Assuntos
Antígenos Transformantes de Poliomavirus/toxicidade , Córnea/patologia , Células Epiteliais/patologia , Oftalmopatias/induzido quimicamente , Oftalmopatias/patologia , Irritantes/toxicidade , Alternativas aos Testes com Animais , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Viral , Células Cultivadas , Citocinas/biossíntese , Oftalmopatias/metabolismo , Humanos , Temperatura
15.
J Appl Toxicol ; 36(5): 669-84, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26251951

RESUMO

Sensitization to chemicals resulting in an allergy is an important health issue. The current gold-standard method for identification and characterization of skin-sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in-vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro-haptens, respiratory sensitizers, non-sensitizing chemicals (including skin-irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non-sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in-vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process.


Assuntos
Alérgenos/toxicidade , Alternativas aos Testes com Animais , Haptenos/toxicidade , Irritantes/toxicidade , Ensaio Local de Linfonodo , Testes Cutâneos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Medição de Risco , Sensibilidade e Especificidade , Pele/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
16.
Vaccine ; 33(32): 3843-9, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26144898

RESUMO

Regulatory potency test for rabies vaccines requires mice vaccination followed by challenge with a live virus via intracerebral route. An alternative in vitro test, consistent with the "3R's" (Reduce, Replace, Refine) was designed to quantify active glycoprotein G using seroneutralizing monoclonal antibodies. This versatile ELISA targets well conformed neutralizing epitopes. Therefore, it quantifies only the trimeric pre-fusion form of glycoprotein G known to elicits the production of viral neutralizing antibodies. The ELISA makes it possible to quantify the rabies antigen during all steps of the product cycle (i.e. viral cultivation, downstream process, formulation and product stability in the presence of aluminum gel or other vaccine valence). Moreover, the batch-to-batch consistency of our active ingredients and formulated products could be demonstrated.


Assuntos
Antígenos Virais/análise , Ensaio de Imunoadsorção Enzimática/métodos , Vacina Antirrábica/imunologia , Tecnologia Farmacêutica/métodos , Potência de Vacina , Medicina Veterinária/métodos , Animais , Camundongos Endogâmicos BALB C , Vacina Antirrábica/normas , Tecnologia Farmacêutica/normas , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/normas , Medicina Veterinária/normas
17.
Toxicol In Vitro ; 29(2): 281-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479353

RESUMO

The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on either the Na(+), K(+), or Ca(2+) channels or the Na(+)/K(+) ATP-ase pump, on the beating was assessed. Diphenhydramine, veratridine, isradipine, verapamil and ouabain induced specific beating arrests that were reversible and none of the concentrations tested induced cytotoxicity. Three K(+) channel blockers, amiodarone, clofilium and sematilide, and the Na(+)/K(+) ATPase pump inhibitor digoxin had no specific effect on the beating. In addition, two marine neurotoxins i.e. saxitoxin and tetrodotoxin elicited specific beating arrests in cardiomyocytes. Comparison of the results obtained with cardiomyocytes to those obtained with the neuroblastoma neuro-2a assay revealed that the cardiomyocytes were generally somewhat more sensitive for the model compounds affecting Na(+) and Ca(2+) channels, but less sensitive for the compounds affecting K(+) channels. The stem cell-derived cardiomyocytes were not as sensitive as the neuroblastoma neuro-2a assay for saxitoxin and tetrodotoxin. It is concluded that the murine stem cell-derived beating cardiomyocytes provide a sensitive model for detection of specific neurotoxins and that the neuroblastoma neuro-2a assay may be a more promising cell-based assay for the screening of marine biotoxins.


Assuntos
Alternativas aos Testes com Animais , Cardiotoxinas/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Neurotoxinas/toxicidade , Saxitoxina/toxicidade , Tetrodotoxina/toxicidade , Animais , Canais de Cálcio/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Camundongos , Miócitos Cardíacos/fisiologia , Canais de Potássio/fisiologia , Canais de Sódio/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia
18.
Arq. bras. med. vet. zootec ; Arq. bras. med. vet. zootec. (Online);66(3): 713-720, 06/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-718097

RESUMO

This study aimed to assess and standardize the ELISA and modified ToBI test in vitro methods in order to verify the potency of epsilon toxicoid in comparison with the in vivo TCP method. The following epsilon toxoids were used: NIBSC standard from batches 375/07, 532/08, 551/08, 373/07 and 378/07. These were evaluated using a TCP test, ELISA and ToBI tests. The results indicate that the correlation ratio between the dilutions of standard NIBSC toxicoid and absorbance values of 89.44% obtained with the ELISA method support the use of the curve to evaluate epsilon toxoids. However, it was observed that the absorbance values were similar for all toxoids, thus presenting no significant difference between higher and lower concentration toxoids. For the ToBI test, the correlation ratio of 96.76, obtained in the curve pattern, demonstrates the effectiveness of the curve to be used in the epsilon toxoid evaluation. The correlation ratio between the titration degrees of toxoids obtained through TCP and ToBI tests was higher than 90%. It is concluded that the type of ELISA test used does present discriminative power for toxoids with different concentrations, which does not support the use of this technique for such a purpose. The ToBI test can be used as a screening method for it is sensitive and effective to detect epsilon toxicoid produced by C. perfringens type D...


Teve-se por objetivo avaliar e padronizar as metodologias in vitro, ELISA e ToBI-test modificado, para a análise de toxoide épsilon, em comparação com a metodologia in vivo TCP. Foram utilizados os seguintes toxoides épsilon: padrão NIBSC e os lotes 375/07, 532/08, 551/08, 373/07 e 378/07, os quais foram avaliados por métodos in vivo, TCP, e in vitro, ELISA e ToBI-test. A análise do título de toxoide épsilon por meio dos métodos in vitro foi realizada a partir de uma curva-padrão, estabelecida previamente. Os principais resultados mostram que os valores de absorbância foram semelhantes para todos os toxoides, não apresentando diferença significativa entre os toxoides mais concentrados e menos concentrados. No ToBI-test, o coeficiente de correlação de 96,76%, obtido na curva-padrão, demonstra a eficiência da curva para avaliação do toxoide épsilon. O coeficiente de correlação entre os títulos de toxoide obtidos pelo TCP e ToBI-test foi superior a 90%. Conclui-se que o tipo de ELISA utilizado não apresenta poder discriminativo para toxoides com diferentes concentrações, inviabilizando a técnica para esse fim. O ToBI-test pode ser utilizado como um método de triagem sensível e eficaz para a detecção de toxoide épsilon de C. perfringens tipo D...


Assuntos
Clostridium/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Toxoides/antagonistas & inibidores , Vacinas , Imunoensaio/métodos
19.
Vaccine ; 31(50): 6022-9, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24161572

RESUMO

To assess the quality of vaccine batches before release, international regulation requires the control of potency of each lot of human rabies vaccines by the in vivo NIH challenge test. Meanwhile, the 3Rs strategy for animal testing encourages the replacement of the in vivo potency test by an in vitro assay. Consequently, since more than 10 years, an ELISA method has been implemented by ANSM in parallel to the NIH test for rabies vaccines lots. It consists in the evaluation of the glycoprotein content using a monoclonal antibody recognizing the trimeric native form of the glycoprotein. This ELISA method is able 1) to monitor the consistency of production with a similar profile than the NIH; 2) to detect a low quantity of glycoprotein in vaccines and 3) to agree with the manufacturer's NIH results by declaring a non compliant batch. This ELISA which characterizes the immunogenic form of the glycoprotein formulated in vaccines seems to be relevant to replace the NIH test and is a promising candidate to be standardized by a collaborative study.


Assuntos
Vacina Antirrábica/imunologia , Potência de Vacina , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas/análise , Humanos , Vacina Antirrábica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA