Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Expert Opin Drug Metab Toxicol ; : 1-16, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39246127

RESUMO

INTRODUCTION: Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED: Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION: CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.

2.
Artif Organs ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221585

RESUMO

BACKGROUND: To accommodate a wider range of medical device sizes, a larger in vitro flow loop thrombogenicity test system using 9.5 -mm inner diameter (ID) tubing was developed and evaluated based on our previously established 6.4 -mm ID tubing system. METHODS: Four cardiopulmonary bypass roller pumps were used concurrently to drive four flow loops during testing. To ensure that each pump produced a consistent thrombogenic response for the same material under the same test conditions, a novel dynamic roller occlusion setting method was applied. Five materials with varying thrombogenic potentials were tested: polytetrafluoroethylene (PTFE), silicone, 3D-printed nylon, latex, and nitrile rubber (BUNA). Day-old bovine blood was heparinized to a donor-specific concentration and recirculated through the flow loops containing test materials at 20 rpm for 1 h at room temperature. Material thrombogenicity was characterized by measuring the thrombus surface coverage, thrombus weight, and platelet (PLT) count reduction. RESULTS: The larger tubing system can differentiate thrombogenic materials (latex, BUNA) from the thromboresistant PTFE material. Additionally, silicone and the 3D-printed nylon exhibited an intermediate thrombogenic response with significantly less thrombus surface coverage and PLT count reduction than latex and BUNA but more thrombus surface coverage than PTFE (p < 0.05). CONCLUSION: The 9.5 -mm ID test system can effectively differentiate materials of varying thrombogenic potentials when appropriate pump occlusion settings and donor-specific anticoagulation are used. This system is being assessed in an interlaboratory study to develop standardized best practices for performing in vitro dynamic thrombogenicity testing of medical devices and materials.

3.
Mol Pharm ; 21(10): 5028-5040, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39195905

RESUMO

The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.


Assuntos
Clorfeniramina , Loratadina , Absorção Cutânea , Pele , Solubilidade , Clorfeniramina/farmacocinética , Loratadina/farmacocinética , Loratadina/química , Pele/metabolismo , Liberação Controlada de Fármacos , Adesivo Transdérmico , Administração Cutânea , Humanos , Animais , Permeabilidade
4.
Acta Biomater ; 187: 261-277, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39187146

RESUMO

This work provides a comprehensive characterization of porcine myocardial tissue, combining true biaxial (TBx), simple triaxial shear (STS) and confined compression (CC) tests to analyze its elastic behavior under cyclic loads. We expanded this study to different zones of the ventricular free wall, providing insights into the local behavior along the longitudinal and radial coordinates. The aging impact was also assessed by comparing two age groups (4 and 8 months). Resulting data showed that the myocardium exhibits a highly nonlinear hyperelastic and incompressible behavior. We observed an anisotropy ratio of 2-2.4 between averaged peak stresses in TBx tests and 1-0.59-0.40 orthotropy ratios for normalised fiber-sheet-normal peak stresses in STS tests. We obtained a highly incompressible response, reaching volumetric pressures of 2-7 MPa for perfused tissue in CC tests, with notable differences when fluid drainage was allowed, suggesting a high permeability. Regional analysis showed reduced stiffness and anisotropy (20-25%) at the apical region compared to the medial, which we attributed to differences in the fiber field dispersion. Compressibility also increased towards the epicardium and apical regions. Regarding age-related variations, 8-month animals showed stiffer response (at least 25% increase), particularly in directions where the mechanical stress is absorbed by collagenous fibers (more than 90%), as supported by a histological analysis. Although compressibility of perfused tissue remained unchanged, permeability significantly reduced in 8-month-old animals. Our findings offer new insights into myocardial properties, emphasizing on local variations, which can help to get a more realistic understanding of cardiac mechanics in this common animal model. STATEMENT OF SIGNIFICANCE: In this work, we conducted a comprehensive analysis of the passive mechanical behavior of porcine myocardial tissue through biaxial, triaxial shear, and confined compression tests. Unlike previous research, we investigated the variation in mechanical response across the left ventricular free wall, conventionally assumed homogeneous, revealing differences in terms of stiffness and compressibility. Additionally, we evaluated age-related effects on mechanical properties by comparing two age groups, observing significant variations in stiffness and permeability. To date, there has been no such in-depth exploration of myocardial elastic response and compressibility considering regional variations along the wall and may contribute to a better understanding of the cardiac tissue's passive mechanical response.


Assuntos
Ventrículos do Coração , Animais , Suínos , Estresse Mecânico , Anisotropia , Envelhecimento/fisiologia , Força Compressiva/fisiologia , Fenômenos Biomecânicos , Sus scrofa
5.
Interv Neuroradiol ; : 15910199241278993, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210848

RESUMO

BACKGROUND AND PURPOSE: Mechanical thrombectomy (MT) for acute ischemic stroke (AIS) relies on efficient tracking of aspiration catheters through complex vascular anatomies. Differences in catheter design lead to variation in tracking performance which may only become apparent after use in patients. We developed an in-vitro methodology for evaluating aspiration catheter performance under a variety of pre-defined circumstances, that can be used during catheter development for design optimization. METHODS: Validation of the in-vitro methodology involved testing four large bore aspiration catheters on recreated challenging vascular access routes derived from patient angiograms. Two experienced neurointerventionalists conducted the tests under controlled physiological and procedural conditions. Each catheter design was evaluated across 30 unique anatomy-procedural set-up combinations. A fifth, prototype large bore catheter was evaluated by trained engineers to assess the applicability of the in-vitro test. RESULTS: Results from statistical analysis using a general linear model demonstrated the methodology's effectiveness in detecting significant tracking differences among catheter designs (p < 0.01). Minimal inter-operator variability was observed (p = 0.304), while procedural techniques significantly influenced tracking performance (p < 0.01). The tortuosity of the arterial access route notably impacted catheter performance (p < 0.01), with anatomical features revealing varying degrees of influence on desirable and undesirable catheter design aspects. CONCLUSION: We successfully developed a test methodology for evaluating the trackability of large bore aspiration catheters intended for treating acute ischemic stroke with large vessel occlusions. This methodology offers a robust approach to pre-clinical design assessment, utilizing anatomical models that simulate real-world vascular challenges to enhance catheter optimization.

6.
Toxicology ; 508: 153936, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216545

RESUMO

The presented research introduces the "Cells-on-Particles" integrated aerosol sampling and cytotoxicity testing in vitro platform, which allows for the direct assessment of the biological effects of captured aerosol particles on a selected cell type without the need for extraction or resuspension steps. By utilizing particles with unaltered chemical and physical properties, the method enables simple and fast screening of biological effects on specific cell types, making it a promising tool for assessing the cytotoxicity of particulate matter in ambient and occupational air. Platforms fabricated from cellulose acetate (CA) and poly[ε]caprolactone (PCL) were proven to be biocompatible and promoted the attachment and growth of the human bronchial epithelial cell line BEAS-2B. The PCL platforms were exposed to simulated occupational aerosols of silver, copper, and graphene oxide nanoparticles. Each nanoparticle type exhibited different and dose-dependent cytotoxic effects on cells, evidenced by reduced cell viability and distinct, particle type-dependent gene expression patterns. Notably, copper nanoparticles were identified as the most cytotoxic, and graphene oxide the least. Comparing the "Cells-on-Particles" and submerged exposure ("Particles-on-Cells") testing strategies, BEAS-2B cells responded to selected nanoparticles in a comparable manner, suggesting the developed testing system could be proposed for further evaluation with more complex environmental aerosols. Despite limitations, including particle agglomeration and the need for more replicates to address variability, the "Cells-on-Particles" platform enables effective detection of toxicity induced by relatively low levels of nanoparticles, demonstrating good sensitivity and a relatively simpler procedure compared to standard 2D cell exposure methods.


Assuntos
Aerossóis , Sobrevivência Celular , Testes de Toxicidade , Humanos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Testes de Toxicidade/métodos , Cobre/toxicidade , Grafite/toxicidade , Nanopartículas Metálicas/toxicidade , Células Epiteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Tamanho da Partícula , Prata/toxicidade , Material Particulado/toxicidade , Poliésteres/toxicidade , Poliésteres/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-39038538

RESUMO

Stinging ants represent a wide range of over 200 different species across the world, of which Solenopsis, Myrmecia, Pogonomyrmex, and Brachyponera genera account for a substantial economic and healthcare burden. S. invicta (red imported fire ant [IFA]) and M. pilosula (jack jumper ant [JJA]) are 2 species of high clinical importance, known to cause anaphylaxis in humans, with numerous reported fatalities. Diagnostic testing should be performed in patients with a history of a systemic reaction with skin testing and/or in vitro specific immunoglobulin E (IgE) testing. In vitro testing is commercially available for IFA through whole-body extract specific IgE and JJA venom-specific IgE, but not widely available for other stinging ant species. Commercial venom component testing for IFA and JJA is currently not available. Patients with a clinical history and positive specific IgE testing should undergo treatment with specific immunotherapy, which is currently available for IFA and JJA. Buildup may be performed using conventional, semi-rush, rush, or ultra-rush schedules with similar risk profiles for IFA. Optimal duration for whole=body extract immunotherapy for IFA and specific JJA venom immunotherapy is not well studied, but generally recommended for at least 3 to 5 years. Sting challenges are used in research settings, primarily to assess treatment efficacy of immunotherapy.

8.
Environ Geochem Health ; 46(8): 273, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958773

RESUMO

To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.


Assuntos
Disponibilidade Biológica , Cromo , Níquel , Poluentes do Solo , Níquel/análise , Níquel/farmacocinética , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Cromo/farmacocinética , Cromo/análise , Humanos , Medição de Risco , Exposição Ambiental , Monitoramento Ambiental/métodos , Solo/química
9.
Int J Stem Cells ; 17(2): 120-129, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38773747

RESUMO

Recent amendments to regulatory frameworks have placed a greater emphasis on the utilization of in vitro testing platforms for preclinical drug evaluations and toxicity assessments. This requires advanced tissue models capable of accurately replicating liver functions for drug efficacy and toxicity predictions. Liver organoids, derived from human cell sources, offer promise as a reliable platform for drug evaluation. However, there is a lack of standardized quality evaluation methods, which hinders their regulatory acceptance. This paper proposes comprehensive quality standards tailored for liver organoids, addressing cell source validation, organoid generation, and functional assessment. These guidelines aim to enhance reproducibility and accuracy in toxicity testing, thereby accelerating the adoption of organoids as a reliable alternative or complementary tool to animal testing in drug development. The quality standards include criteria for size, cellular composition, gene expression, and functional assays, thus ensuring a robust hepatotoxicity testing platform.

10.
AAPS J ; 26(3): 43, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575754

RESUMO

Medication administration via enteral feeding tubes (EFT) is a necessary practice for patients unable to swallow oral dosage forms due to a medical condition or treatment that affects the ability to swallow or the function of the gastrointestinal tract. Off-label administration of oral drug products via EFT raises concerns for pharmaceutical sponsors, regulators, and healthcare practitioners (HCPs) because of the potential risks this practice introduces to both the patient and the caregiver. These risks can be mitigated by generating data-supported instructions that patients and HCPs can use to ensure safe and accurate administration of oral drug products via EFT. This commentary presents an industry perspective on the testing that should be conducted to enable development of product-specific instructions in the labeling to support or advise against administration of oral drug products via enteral feeding tube. The proposal outlined in this commentary takes a risk-based approach, addressing recommendations from both regulatory agencies as well as considerations for expanding this testing to address needs specific to neonatal and pediatric populations.


Assuntos
Nutrição Enteral , Intubação Gastrointestinal , Criança , Recém-Nascido , Humanos , Administração Oral , Preparações Farmacêuticas , Técnicas In Vitro
11.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607123

RESUMO

Methodologies across the dispersion preparation, characterization, and cellular dosimetry of hydrophilic nanoparticles (NPs) have been developed and used extensively in the field of nanotoxicology. However, hydrophobic NPs pose a challenge for dispersion in aqueous culture media using conventional methods that include sonication followed by mixing in the culture medium of interest and cellular dosimetry. In this study, a robust methodology for the preparation of stable dispersions of hydrophobic NPs for cellular studies is developed by introducing continuous energy over time via stirring in the culture medium followed by dispersion characterization and cellular dosimetry. The stirring energy and the presence of proteins in the culture medium result in the formation of a protein corona around the NPs, stabilizing their dispersion, which can be used for in vitro cellular studies. The identification of the optimal stirring time is crucial for achieving dispersion and stability. This is assessed through a comprehensive stability testing protocol employing dynamic light scattering to evaluate the particle size distribution stability and polydispersity. Additionally, the effective density of the NPs is obtained for the stable NP dispersions using the volumetric centrifugation method, while cellular dosimetry calculations are done using available cellular computational modeling, mirroring approaches used for hydrophilic NPs. The robustness of the proposed dispersion approach is showcased using a highly hydrophobic NP model (black carbon NPs) and two culture media, RPMI medium and SABM, that are widely used in cellular studies. The proposed approach for the dispersion of hydrophobic NPs results in stable dispersions in both culture media used here. The NP effective density of 1.03-1.07 g/cm3 measured here for black carbon NPs is close to the culture media density, resulting in slow deposition on the cells over time. So, the present methodology for dispersion and dosimetry of hydrophobic NPs is essential for the design of dose-response studies and overcoming the challenges imposed by slow particle deposition.

12.
J Biomech ; 166: 112047, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484653

RESUMO

To maintain the physiological dynamics of the mitral annulus, mitral annuloplasty rings (MAR) must be flexible. Enhanced flexibility implies decreased resistance to fatigue and potential for fatigue fracture. This study established new methods to test the flexible fatigue life of MAR in-vitro using numerical analysis; the purpose is that the fatigue test could reflect the real stress distribution in-vivo. Based on the conventional test methods (C1, D1), this paper presents a novel test method (C2, D2). Four testing methods for open-end annuloplasty rings (C1, C2) and closed-end annuloplasty rings (D1, D2) were modelled and their stress distribution calculated by finite element analysis. The mean absolute error (Χ) and the Pearson correlation coefficient (Φ) were used to quantify the difference in stress distribution between the loading modes in-vivo and in-vitro. For closed-end annuloplasty rings, the novel test method (D2) is not obvious better than conventional test methods(D1) in duplicating the stress distribution (ΦD1 = 0.88 vs ΦD2 = 0.92). However, the maximum values of stress in the novel test method are closer to the maximum value of stress under in-vivo loading (ΧD1 = 5.2Mpa vs ΧD2 = 4.4Mpa). For open-end annuloplasty rings, the novel test method(C2) is obviously superior to the conventional test method(C1) in duplicating both the stress distribution and the stress peak values of the in-vivo loading (ΦC1 = 0.22 vs ΦC2 = 0.98; ΧC1 = 59.1Mpa vs ΧC2 = 11.0Mpa). The in-vitro loading methods described in this article more closely approximated in-vivo conditions compared to traditional methods. They are simpler to operate, more efficient and can help manufacturers expedite new product development, assist regulatory agencies with product quality oversight.


Assuntos
Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Anuloplastia da Valva Mitral , Insuficiência da Valva Mitral , Humanos , Desenho de Prótese , Anuloplastia da Valva Mitral/métodos , Valva Mitral/cirurgia , Valva Mitral/fisiologia , Teste de Materiais , Insuficiência da Valva Mitral/cirurgia
13.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447786

RESUMO

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Assuntos
Lisofosfolipídeos , Neoplasias , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Neoplasias/metabolismo , Sítios de Ligação , Sítio Alostérico
14.
Biomater Adv ; 159: 213835, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531259

RESUMO

Additive manufacturing (AM) technology has paved the way for manufacturing personalised stents. However, there is a notable gap in comprehensive microstructure analyses and in vitro evaluations of the AM CoCr stents using advanced methodologies. To address this gap, this study focuses on investigating the microstructure and in vitro performance of personalised CoCr stents manufactured through micro-laser powder bed fusion (µ-LPBF). The evaluation process begins with the measurements of dimensions and surface roughness, followed by in-depth microstructural analyses. To improve surface roughness and reduce excessive strut size, the µ-LPBF stents undergo electrochemical polishing. Importantly, in vitro stent deployments are carried out in artificial arteries manufactured based on actual patients' data. Compared to the commercial MULTI-LINK VISION CoCr stent, the µ-LPBF personalised stents have rough surface finish (average roughness: 1.55 µm for µ-LPBF vs. 1.09 µm for commercial) and compromised grain microstructures (elongated for µ-LPBF vs. equiaxed for commercial). However, the personalised stents demonstrate better performances in in vitro tests. Notably, compared to the commercial stent in the two studied cases, they deliver larger lumen gains (up to 11.24 %) and reduced recoils (up to 4 times). This study validates the merit of the lesion-specific designs and the feasibility of using AM technology for stent fabrication.


Assuntos
Artérias , Stents , Humanos , Leitos , Comércio , Grão Comestível
15.
Toxicol Sci ; 199(2): 227-245, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38335931

RESUMO

Chemicals in the systemic circulation can undergo hepatic xenobiotic metabolism, generate metabolites, and exhibit altered toxicity compared with their parent compounds. This article describes a 2-chamber liver-organ coculture model in a higher-throughput 96-well format for the determination of toxicity on target tissues in the presence of physiologically relevant human liver metabolism. This 2-chamber system is a hydrogel formed within each well consisting of a central well (target tissue) and an outer ring-shaped trough (human liver tissue). The target tissue chamber can be configured to accommodate a three-dimensional (3D) spheroid-shaped microtissue, or a 2-dimensional (2D) cell monolayer. Culture medium and compounds freely diffuse between the 2 chambers. Human-differentiated HepaRG liver cells are used to form the 3D human liver microtissues, which displayed robust protein expression of liver biomarkers (albumin, asialoglycoprotein receptor, Phase I cytochrome P450 [CYP3A4] enzyme, multidrug resistance-associated protein 2 transporter, and glycogen), and exhibited Phase I/II enzyme activities over the course of 17 days. Histological and ultrastructural analyses confirmed that the HepaRG microtissues presented a differentiated hepatocyte phenotype, including abundant mitochondria, endoplasmic reticulum, and bile canaliculi. Liver microtissue zonation characteristics could be easily modulated by maturation in different media supplements. Furthermore, our proof-of-concept study demonstrated the efficacy of this coculture model in evaluating testosterone-mediated androgen receptor responses in the presence of human liver metabolism. This liver-organ coculture system provides a practical, higher-throughput testing platform for metabolism-dependent bioactivity assessment of drugs/chemicals to better recapitulate the biological effects and potential toxicity of human exposures.


Assuntos
Técnicas de Cocultura , Hepatócitos , Ensaios de Triagem em Larga Escala , Fígado , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Testes de Toxicidade/métodos , Linhagem Celular , Biomarcadores/metabolismo , Xenobióticos/toxicidade
16.
J Thromb Haemost ; 22(4): 1187-1201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184205

RESUMO

BACKGROUND: Current assays for the detection of (allo)antibodies to platelet antigens are often laborious and widely based on the presence of well-characterized donor platelets. OBJECTIVES: To develop an easy-to-perform, sensitive, and specific test for the detection of antibodies against platelet antigens, in particular, glycoprotein (GP) antigens, called "Recombinantly Expressed Tagged SUrface Protein" (RETSUP) assay, which does not require donor platelets. METHODS: Twin-Strep-tagged GP complexes were recombinantly expressed in human embryonic kidney 293 cells after stable transfection. These cell lines were used as antigen sources in the RETSUP assay, combining cell-based and enzyme-linked immunosorbent assay-based assay procedures. The assay performance was tested with recombinant antibodies, anti-human platelet antigen (HPA) reference plasmas, and anti-HPA patient sera. RESULTS: Human embryonic kidney 293 cell lines stably expressing either Twin-Strep-labeled GPIa/IIa, GPIIb/IIIa, GPIb/IX, or GPIb/IX/V complexes or GPV as well as the distinct HPA-1, HPA-3, and HPA-5 epitopes were successfully generated. Applying the generated GP-expressing cell lines, the developed RETSUP assay proved very sensitive and specific with recombinant antibodies targeting different GPs and human plasma/serum samples. The results of the test were not affected by the GP carrying the Twin-Strep-tag or by using freshly harvested or cryopreserved cells. CONCLUSION: The RETSUP assay is an easy-to-perform, sensitive, and specific assay for the detection of plasma/serum antibodies to platelet GP, with performance comparable to or better than those of current state-of-the-art assays in antiplatelet antibody diagnostics. Owing to the recombinant nature of the target antigens, it can be easily adapted to detect antibodies in other antibody-mediated diseases.


Assuntos
Antígenos de Plaquetas Humanas , Proteínas de Membrana , Humanos , Isoanticorpos , Plaquetas , Ensaio de Imunoadsorção Enzimática/métodos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Antígenos de Plaquetas Humanas/genética
17.
J Pharm Sci ; 113(2): 407-418, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37972891

RESUMO

In Vitro Permeation Test (IVPT) is commonly used to evaluate skin penetration of chemicals and performance of dermatological products. For a permeant with low aqueous solubility, an additive that is expected not to alter the skin barrier can be used in the receptor solution to improve permeant solubility. The objective of this study was to (a) evaluate the effects of these additives in IVPT receptor solution on skin permeability of model permeants and skin electrical resistance and (b) determine the solubility of the permeants in these receptor solutions. Bovine serum albumin (BSA), 2-hydroxypropyl-beta-cyclodextrin (HPCD), ethanol, nonionic surfactant Brij-98, and propylene glycol were the additives, and phosphate buffered saline (PBS) was the control. Steady-state skin permeability coefficients and resistances were determined. The receptor solutions examined in this study did not cause a significant increase in skin permeability or decrease in resistance (less than 40 % changes) except 25 % ethanol. The receptor solution containing 25 % ethanol induced an approximately twofold average increase in skin permeability and reduced skin electrical resistance by approximately threefold. The receptor solution of 2.5 % HPCD provided the highest levels of solubility for the model lipophilic permeants, while 0.2 % Brij-98 and 5 % ethanol showed the lowest solubility enhancement from those in PBS.


Assuntos
Óleos de Plantas , Polietilenoglicóis , Absorção Cutânea , Pele , Administração Cutânea , Pele/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina , Permeabilidade , Etanol
18.
Ann Biomed Eng ; 52(2): 386-395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864043

RESUMO

Congenital heart disease (CHD) accounts for nearly one-third of all congenital defects, and patients often require repeated heart valve replacements throughout their lives, due to failed surgical repairs and lack of durability of bioprosthetic valve implants. This objective of this study is to develop and in vitro test a fetal transcatheter pulmonary valve replacement (FTPVR) using sutureless techniques to attach leaflets, as an option to correct congenital defects such as pulmonary atresia with intact ventricular septum (PA/IVS), in utero. A balloon expandable design was analyzed using computational simulations to identify areas of failure. Five manufactured valves were assembled using the unique sutureless approach and tested in the fetal right heart simulator (FRHS) to evaluate hemodynamic characteristics. Computational simulations showed that the commissural loads on the leaflet material were significantly reduced by changing the attachment techniques. Hemodynamic analysis showed an effective orifice area of 0.08 cm2, a mean transvalvular pressure gradient of 7.52 mmHg, and a regurgitation fraction of 8.42%, calculated over 100 consecutive cardiac cycles. In conclusion, the FTPVR exhibited good hemodynamic characteristics, and studies with biodegradable stent materials are underway.


Assuntos
Próteses Valvulares Cardíacas , Poliésteres , Atresia Pulmonar , Substituição da Valva Aórtica Transcateter , Humanos , Atresia Pulmonar/cirurgia , Coração Fetal , Desenho de Prótese , Valva Aórtica , Resultado do Tratamento
19.
J Hand Surg Glob Online ; 5(6): 823-827, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38106931

RESUMO

Purpose: To develop and evaluate the capabilities of a dynamic elbow testing apparatus that simulates unconstrained elbow motion throughout the range of humerothoracic (HTA) abduction. Methods: Elbow flexion was generated by six computer-controlled electromechanical actuators that simulated muscle action, while six degree-of-freedom joint motion was measured using an optical tracking device. Repeatability of joint kinematics was assessed at four HTA angles (0°, 45°, 90°, 135°) and with two muscle force combinations (A1-biceps brachialis, brachioradialis and A2-biceps, brachioradialis). Repeatability was determined by comparing kinematics at every 10° of flexion over five flexion-extension cycles (0° to 100°). Results: Multiple muscle force combinations can be used at each HTA angle to generate elbow flexion. Trials showed that the testing apparatus produced highly repeatable joint motion at each HTA angle and with varying muscle force combinations. The intraclass correlation coefficient was greater than 0.95 for all conditions. Conclusions: Repeatable smooth cadaveric elbow motion was created that mimicked the in vivo situation. Clinical relevance: These results suggest that the dynamic elbow testing apparatus can be used to characterize elbow biomechanics in cadaver upper extremities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA