Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
1.
Small ; : e2405459, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358931

RESUMO

A van der Waals (vdW) α-In2Se3 ferroelectric semiconductor channel-based field-effect transistor (FeS-FET) has emerged as a next-generation electronic device owing to its versatility in various fields, including neuromorphic computing, nonvolatile memory, and optoelectronics. However, screening charges cause by the imperfect surface morphology of vdW α-In2Se3 inhibiting electrical polarization remain an unresolved issue. In this study, for the first time, a method is elucidated to recover the inherent electric polarization in both in- and out-of-plane directions of the α-In2Se3 channel based on post-exfoliation annealing (PEA) and improve the electrical performance of vdW FeS-FETs. Following PEA, an ultra-thin In2Se3-3xO3x layer formed on the top surface of the α-In2Se3 channel is demonstrated to passivate surface defects and enhance the electrical performance of FeS-FETs. The on/off current ratio of the α-In2Se3 FeS-FET has increased from 5.99 to 1.84 × 106, and the magnitude of ferroelectric resistance switching has increased from 1.20 to 26.01. Moreover, the gate-modulated artificial synaptic operation of the α-In2Se3 FeS-FET is demonstrated and illustrate the significance of the engineered interface in the vdW FeS-FET for its application to multifunctional devices. The proposed α-In2Se3 FeS-FET is expected to provide a significant breakthrough for advanced memory devices and neuromorphic computing.

2.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 10): 1020-1023, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39372186

RESUMO

Crystallization of 5-nona-noyl-8-hy-droxy-quinoline in the presence of InCl3 in aceto-nitrile yields a dinuclear InIII complex crystallizing in the space group P. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol-ecule and two 8-quinolino-late ions. The crystal of the title complex is composed of two-dimensional supra-molecular aggregates, resulting from the linkage of the Owater-H⋯O=C and Owater-H⋯Cl hydrogen bonds as well as bifurcated Carene-H⋯Cl contacts.

3.
ChemSusChem ; : e202401181, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375528

RESUMO

Electrochemical carbon dioxide reduction reaction (CO2RR) is an environmentally friendly and economically viable approach to convert greenhouse gas CO2 into valuable chemical fuels and feedstocks. Among various products of CO2RR, formic acid/formate (HCOOH/HCOO-) is considered the most attractive one with its high energy density and ease of storage, thereby enabling widespread commercial applications in chemical, medicine, and energy-related industries. Nowadays, the development of efficient and financially feasible electrocatalysts with excellent selectivity and activity towards HCOOH/HCOO- is paramount for the industrial application of CO2RR technology, in which Tin (Sn), Bismuth (Bi), and Indium (In)-based electrocatalysts have drawn significant attention due to their high efficiency and various regulation strategies have been explored to design diverse advanced electrocatalysts. Herein, we comprehensively review the rational strategies to enhance electrocatalytic performances of these electrocatalysts for CO2RR to HCOOH/HCOO-. Specifically, the internal mechanism between the physicochemical properties of engineering materials and electrocatalytic performance is analyzed and discussed in details. Besides, the current challenges and future opportunities are proposed to provide inspiration for the development of more efficient electrocatalysts in this field.

4.
Adv Mater ; : e2406783, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388528

RESUMO

Native oxides form on the surface of many metals. Here, using gallium-based liquid metal alloys, Johnson-Kendall-Roberts (JKR) measurements are employed to show that native oxide dramatically lower the tension of the metal interface from 724 to 10 mN m-1. Like conventional surfactants, the oxide has asymmetry between the composition of its internal and external interfaces. Yet, in comparison to conventional surfactants, oxides are an order of magnitude more effective at lowering tension and do not need to be added externally to the liquid (i.e., oxides form naturally on metals). This surfactant-like asymmetry explains the adhesion of oxide-coated metals to surfaces. The resulting low interfacial energy between the metal and the interior of the oxide helps stabilize non-spherical liquid metal structures. In addition, at small enough macroscopic contact angles, the finite tension of the liquid within the oxide can drive fluid instabilities that are useful for separating the oxide from the metal to form oxide-encased bubbles or deposit thin oxide films (1-5 nm) on surfaces. Since oxides form on many metals, this work can have implications for a wide range of metals and metal oxides in addition to explaining the physical behavior of liquid metal.

5.
Nanomaterials (Basel) ; 14(19)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39404333

RESUMO

In recent years, the rapid development of dynamically tunable metasurfaces has provided a new avenue for flexible control of optical properties. This paper introduces a transmission-type electrically tunable metasurface, employing a series of subwavelength-scale silicon (Si) nanoring structures with an intermediate layer of Al2O3-ITO-Al2O3. This design allows the metasurface to induce strong Mie resonance when transverse electric (TE) waves are normally incident. When a bias voltage is applied, the interaction between light and matter is enhanced due to the formation of an electron accumulation layer at the ITO-Al2O3 interface, thereby altering the resonance characteristics of the metasurface. This design not only avoids the absorption loss of metal nanostructures and has a large modulation depth, but also shows compatibility with complementary metal oxide semiconductor (CMOS) technology.

6.
Br J Haematol ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407432

RESUMO

In primary immune thrombocytopenia (ITP), predictors of disease evolution and treatment response are needed. Data based on the site of platelet destruction are scarce. We performed a retrospective single-centre study of adult patients with primary ITP undergoing at least one Indium-111 platelet scintigraphy (IPS) between 2009 and 2018. Thirty-three patients had isolated hepatic platelet destruction (H-group), and 97 isolated splenic destruction (S-group). Median age at diagnosis (p < 0.001), proportion of associated cardiovascular (p < 0.001), organ-specific autoimmune diseases (p = 0.02), dependence on steroids (p = 0.003) and failure to rituximab (p = 0.01) were higher and relapse more frequent (p = 0.03) in H-group compared to non-splenectomized patients in S-group. Splenectomy was only performed in patients from S-group (as patients with hepatic sequestration are not splenectomized in our centre): 79% were in relapse-free remission at the end of a median 3.4-year post-IPS follow-up, 16% relapsed. In multivariate analyses, only a history of organ-specific autoimmune or inflammatory disease was significantly associated with hepatic sequestration (OR = 4.3, 95% CI = 1.2-15, p = 0.02). Patients with isolated hepatic sequestration were older, had more cardiovascular events and organ-specific autoimmune diseases, greater dependence on steroids, more relapses and a decreased response rate to rituximab suggesting an increased refractoriness to immunomodulatory therapies. Patients with isolated splenic sequestration responded well to splenectomy.

7.
Molecules ; 29(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39407534

RESUMO

In this work, two different composite nanostructures, YAG:Ce and Ga0.9In0.1N, were prepared by the Urea Glass Route method and tested for the production of white light. The first composite was prepared by synthetizing the Ga0.9In0.1N nanoparticles in the presence of YAG:Ce nanoparticles. The second one was prepared by synthetizing YAG:Ce nanoparticles in the presence of Ga0.9In0.1N nanoparticles. These systems can be useful for the production of white light. X-ray Diffraction and Transmission and Scanning Electron Microscopies (TEM and SEM) were used to evaluate their structural and morphological properties. Excitation and emission spectra, the quantum yield and colour of the emitted light were acquired to evaluate the optical properties of the systems.

8.
ChemSusChem ; : e202401810, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347590

RESUMO

The photoelectrochemical (PEC) dual-electron pathway for water oxidation to produce hydrogen peroxide (H2O2) shows promising prospects. However, the dominance of the four-electron pathway leading to O2 evolution competes with this reaction, severely limiting the efficiency of H2O2 production. Here, we report a In2O3 passivator-coated BiVO4 (BVO) photoanode, which effectively enhances the selectivity and yield of H2O2 production via PEC water oxidation. Based on XPS spectra and DFT calculations, a heterojunction is formed between In2O3 and BVO, promoting the effective separation of interface and surface charges. More importantly, Mott-Schottky analysis and open-circuit potential measurements demonstrate that the In2O3 passivation layer on the BVO photoanode shifts the hole quasi-Fermi level towards the anodic direction, enhancing the oxidation level of holes. Additionally, the widening of the depletion layer and the flattening of the band bending on the In2O3-coated BVO photoanode favor the generation of H2O2 while suppressing the competitive O2 evolution reaction. In addition, the coating of In2O3 can also inhibit the decomposition of H2O2 and improve the stability of the photoanode. This work provides new perspectives on regulating PEC two/four-electron transfer for selective H2O2 production via water oxidation.

9.
Materials (Basel) ; 17(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39336347

RESUMO

The aim of this work was to investigate the possibility of modifying the physical properties of indium tin oxide (ITO) layers by annealing them in different atmospheres and temperatures. Samples were annealed in vacuum, air, oxygen, nitrogen, carbon dioxide and a mixture of nitrogen with hydrogen (NHM) at temperatures from 200 °C to 400 °C. Annealing impact on the crystal structure, optical, electrical, thermal and thermoelectric properties was examined. It has been found from XRD measurements that for samples annealed in air, nitrogen and NHM at 400 °C, the In2O3/In4Sn3O12 share ratio decreased, resulting in a significant increase of the In4Sn3O12 phase. The annealing at the highest temperature in air and nitrogen resulted in larger grains and the mean grain size increase, while vacuum, NHM and carbon dioxide atmospheres caused the decrease in the mean grain size. The post-processing in vacuum and oxidizing atmospheres effected in a drop in optical bandgap and poor electrical properties. The carbon dioxide seems to be an optimal atmosphere to obtain good TE generator parameters-high ZT. The general conclusion is that annealing in different atmospheres allows for controlled changes in the structure and physical properties of ITO layers.

10.
Angew Chem Int Ed Engl ; 63(41): e202409784, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39225426

RESUMO

Subnanometer metal clusters show advantages over conventional metal nanoparticles in numerous catalytic reactions owing to their high percentage of exposed surface sites, abundance of under-coordinated metal sites and unique electronic structures. However, the applications of subnanometer metal clusters in high-temperature catalytic reactions (>600 °C) are still hindered, because of their low stability under harsh reaction conditions. In this work, we have developed a zeolite-confined bimetallic PtIn catalyst with exceptionally high stability against sintering. A combination of experimental and theoretical studies shows that the isolated framework In(III) species serve as the anchoring sites for Pt species, precluding the migration and sintering of Pt species in the oxidative atmosphere at ≥650 °C. The catalyst comprising subnanometer PtIn clusters exhibits long-term stability of >1000 h during a cyclic reaction-regeneration test for ethane dehydrogenation reaction.

11.
J Colloid Interface Sci ; 678(Pt A): 757-766, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39217691

RESUMO

The electrochemical reduction of CO2 (ERCO2) has emerged as one of the most promising methods for achieving both renewable energy storage and CO2 recovery. However, achieving both high selectivity and stability of catalysts remains a significant challenge. To address this challenge, this study investigated the selective synthesis of formate via ERCO2 at the interface of In2O3 and Bi2O3 in the InBiO6 composite material. Moreover, InBiO6 was synthesized using indium-based metal-organic frameworks as precursor, which underwent continuous processing through ion exchange and thermal reduction. The results revealed that the formate Faradaic efficiency (FEformate) of InBiO6 reached nearly 100 % at -0.86 V vs. reversible hydrogen electrode (RHE) and remained above 90 % after continuous 317-h electrolysis, which exceeded those of previously reported indium-based catalysts. Additionally, the InBiO6 composite material exhibited an FEformate exceeding 80 % across a wide potential range of 500 mV from -0.76 to -1.26 V vs. RHE. Density-functional theory analysis confirmed that the heterogeneous interface of InBiO6 played a role in achieving optimal free energies for *OCHO on its surface. Furthermore, the addition of Bi to the InBiO6 matrix facilitated electron transfer and altered the electronic structure of In2O3, thereby enhancing the adsorption, decomposition, and formate production of *OCHO.

12.
ACS Appl Mater Interfaces ; 16(37): 49902-49912, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39241187

RESUMO

The production of controlled doping in two-dimensional semiconductor materials is a challenging issue when introducing these systems into current and future technology. In some compounds, the coexistence of distinct crystallographic phases for a fixed composition introduces an additional degree of complexity for synthesis, chemical stability, and potential applications. In this work, we demonstrate that a multiphase In2Se3 layered semiconductor system, synthesized with three distinct structures─rhombohedral α and ß-In2Se3 and trigonal δ-In2Se3─exhibits chemical stability and well-behaved n-type doping. Scanning tunneling spectroscopy measurements reveal variations in the local electronic density of states among the In2Se3 structures, resulting in a compound system with electronic bandgaps that range from infrared to visible light. These characteristics make the layered In2Se3 system a promising candidate for multigap or broad spectral optical devices, such as detectors and solar cells. The ability to tune the electronic properties of In2Se3 through structural phase manipulation makes it ideal for integration into flexible electronics and the development of heterostructures with other materials.

13.
Nanomicro Lett ; 17(1): 12, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325072

RESUMO

Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility. In this paper, we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using self-cracking-assisted templates. Using this method, we produced an electrode with ultra-transparency (97.39%), high conductance (Rs = 21.24 Ω sq-1), elevated work function (5.16 eV), and good mechanical stability. We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics, organic light-emitting diodes, and flexible transparent memristor devices for neuromorphic computing, resulting in exceptional device performance. In addition, the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility, rendering them a promising option for application in flexible optoelectronics.

14.
Nanomaterials (Basel) ; 14(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39269070

RESUMO

The efficiency of current GaN-based blue laser diodes (LDs) is limited by the high resistance of a thick p-AlGaN cladding layer. To reduce the operation voltage of InGaN blue LDs, we investigated optimum LD structures with an indium tin oxide (ITO) partial cladding layer using numerical simulations of LD device characteristics such as laser power, forward voltage, and wall-plug efficiency (WPE). The wall-plug efficiency of the optimized structure with the ITO layer was found to increase by more than 20% relative to the WPE of conventional LD structures. In the optimum design, the thickness of the p-AlGaN layer decreased from 700 to 150 nm, resulting in a significantly reduced operation voltage and, hence, increased WPE. In addition, we have proposed a new type of GaN-based blue LD structure with a dielectric partial cladding layer to further reduce the optical absorption of a lasing mode. The p-cladding layer of the proposed structure consisted of SiO2, ITO, and p-AlGaN layers. In the optimized structure, the total thickness of the ITO and p-AlGaN layers was less than 100 nm, leading to significantly improved slope efficiency and operation voltage. The WPE of the optimized structure was increased relatively by 25% compared to the WPE of conventional GaN-based LD structures with a p-AlGaN cladding layer. The investigated LD structures employing the ITO and SiO2 cladding layers are expected to significantly enhance the WPE of high-power GaN-based blue LDs.

15.
Environ Sci Pollut Res Int ; 31(47): 57748-57764, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39292305

RESUMO

Gallium and indium, metals present in light-emitting diode (LED) lighting technology, can be effectively recovered from aqueous solutions by sorption. For this purpose, carbonaceous materials, such as activated carbon, or low-cost biosorbents as beer bagasse, spent coffee grounds or peanut shells, and a low-cost zeolite as chabazite, were characterized by BET, FTIR, XRD, and SEM analysis prior use. Protonated chabazite, with high surface area (505 m2/g) and a Si/Al molar ratio of 3.4, showed high sorption capacities for gallium (56 mg/g) and indium (92 mg/g), which is 10 to 30 times higher than those of our carbonaceous materials (T = 298 K, pH < 3, dosage = 1 g/L). Sorption experiments with both metals in solution showed a competitive effect between gallium and indium for the sorption sites of the chabazite, showing more affinity toward gallium than indium. Ga3+sorbed/In3+sorbed molar ratio above 2 was achieved for the same initial concentration of both metals, increasing to almost 3 when the initial gallium concentration increased, which was appropriate since gallium concentration tends to be higher in LED chips. However, the sorption capacity for both metals was always around 0.35 mmol Ga + In/g. The selectivity of the chabazite was conditioned by different behavior of both metals in aqueous solution at the sorption pH (below 3.5) being the predominant species in solution Ga(OH)2+ for gallium and In3+ for indium. Sorption with protonated chabazite can be used in the treatment of spent LEDs leachate for the dual purpose of water purification and selective metal separation.


Assuntos
Gálio , Índio , Índio/química , Gálio/química , Adsorção , Poluentes Químicos da Água/química , Metais/química , Zeolitas/química
16.
Small ; : e2407045, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286843

RESUMO

This study focuses on the development of environmentally friendly Au-Cu2-xS/CuInS2 heteronanotrimers. The chosen strategy relies on the laser photodeposition of a single gold nanodot (ND) onto Janus Cu2- xS/CuInS2 heteronanocrystals (HNCs). This method offers precise control over the number, location, and size (5 to 8 nm) of the Au NDs by adjusting laser power for the career production, concentration of hole scavenger for charge equilibration in redox reactions, and gold precursor concentration, and exposure time for the final ND size. The photoreduction of gold ions onto HNCs starts systematically at the Cu2- xS tip. The Au deposition then depends on the CuInS2 segment length. For short HNCs, stable Au-Cu2- xS/CuInS2 heteronanotrimers form, while long HNCs undergo a secondary photo-induced step: the initial Au ND is progressively oxidized, with concomitant deposition of a second gold ND on the CuInS2 side, to yield Au2S-Cu2- xS/CuInS2-Au heteronanotrimers. Results are rationalized by quantitative comparison with a model that describes the growth kinetics of NDs and Au-Cu2- xS transformation and emphasizes the importance of charge separation in predicting selective deposition in heteronanotrimer production. The key parameter controlling Au-Cu2‒ xS/CuInS2 HNCs is the photoinduced electric field gradient generated by charge separation, which is tailored by controlling the CuInS2 segment size.

17.
Small ; : e2403722, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308286

RESUMO

Gallium-based liquid metals (LMs) are widely used for stretchable and reconfigurable electronics thanks to their fluidic nature and excellent conductivity. These LMs possess attractive optical properties for photonics applications as well. However, due to the high surface tension of the LMs, it is challenging to form LM nanostructures with arbitrary shapes using conventional nanofabrication techniques. As a result, LM-based nanophotonics has not been extensively explored. Here, a simple yet effective technique is demonstrated to deterministically fabricate LM nanopatterns with high yield over a large area. This technique demonstrates for the first time the capability to fabricate LM nanophotonic structures of various precisely defined shapes and sizes using two different LMs, that is, liquid gallium and liquid eutectic gallium-indium alloy. High-density arrays of LM nanopatterns with critical feature sizes down to ≈100 nm and inter-pattern spacings down to ≈100 nm are achieved, corresponding to the highest resolution of any LM fabrication technique developed to date. Additionally, the LM nanopatterns demonstrate excellent long-term stability under ambient conditions. This work paves the way toward further development of a wide range of LM nanophotonics technologies and applications.

18.
Soft Robot ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253876

RESUMO

We propose a soft electromagnetic sliding actuator that provides various planar motions to construct highly compliant actuation systems. The actuator is composed of a fully soft actuation base (stator) for generating electromagnetic and magnetic forces and a rigid neodymium magnet (slider) that slides on the actuation base. A parallel liquid-metal coil array in the stator is designed based on theoretical modeling and an optimization process to maximize the electromagnetic field density. The stretchable magnetic components in the stator allow the slider to retain its position stably without additional constraints. By incorporating an untethered structure in which the slider is mechanically decoupled from the stator, the actuator can be operated with reduced power consumption, attributed to the absence of a restoring force. The trajectory of the slider can be programmed by selectively applying the input current to the liquid-meal coil array, and the location of the slider can be estimated by measuring the change in inductance of each coil. Moreover, the proposed actuator demonstrates the capability of operating on curved surfaces through its physical compliance as well as on inclined surfaces thanks to the holding force generated by the magnetic components of the stator. Taking advantage of the unique characteristics of our actuator, robotic applications, including shape morphing systems and sensor-actuator integrated systems, are demonstrated.

19.
Molecules ; 29(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39202795

RESUMO

Significant interest has emerged for the application of Pd-In2O3 catalysts as high-performance catalysts for CO2 hydrogenation to CH3OH. However, precise active site control in these catalysts and understanding their reaction mechanisms remain major challenges. In this investigation, a series of Pd-InOx catalysts were synthesized, revealing three distinct types of active sites: In-O, Pd-O(H)-In, and Pd2In3. Lower Pd loadings exhibited Pd-O(H)-In sites, while higher loadings resulted in Pd2In3 intermetallic compounds. These variations impacted catalytic performance, with Pd-O(H)-In catalysts showing heightened activity at lower temperatures due to the enhanced CO2 adsorption and H2 activation, and Pd2In3 catalysts performing better at elevated temperatures due to the further enhanced H2 activation. In situ DRIFTS studies revealed an alteration in key intermediates from *HCOO over In-O bonds to *COOH over Pd-O(H)-In and Pd2In3 sites, leading to a shift in the main reaction pathway transition and product distribution. Our findings underscore the importance of active site engineering for optimizing catalytic performance and offer valuable insights for the rational design of efficient CO2 conversion catalysts.

20.
Molecules ; 29(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202936

RESUMO

Heterostructures of visible light-absorbing semiconductors were prepared through the growth of ZnIn2S4 crystallites in the presence of CdS nanostructures. A variety of hybrid compositions was synthesized. Both reference samples and heterostructured materials were characterized in detail, regarding their morphology, crystalline character, chemical speciation, as well as vibrational properties. The abovementioned physicochemical characterization suggested the absence of doping phenomena, such as the integration of either zinc or indium ions into the CdS lattice. At specific compositions, the growth of the amorphous ZnIn2S4 component was observed through both XRD and Raman analysis. The development of heterojunctions was found to be composition-dependent, as indicated by the simultaneous recording of the Raman profiles of both semiconductors. The optical band gaps of the hybrids range at values between the corresponding band gaps of reference semiconductors. The photocatalytic activity was assessed in both organic dye degradation and hydrogen peroxide evolution. It was observed that the hybrids demonstrating efficient photocatalytic activity in dye degradation were rather poor photocatalysts for hydrogen peroxide evolution. Specifically, the hybrids enriched in the CdS component were shown to act efficiently for hydrogen peroxide evolution, whereas ZnIn2S4-enriched hybrids demonstrated high potential to photodegrade an azo-type organic dye. Furthermore, scavenging experiments suggested the involvement of singlet oxygen in the mechanistic path for dye degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA