Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120292

RESUMO

Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in molecular diagnostic rates, many patients remain molecularly unsolved. It is thought that non-coding variants or variants of uncertain significance contribute significantly to this diagnostic gap. This study aims to demonstrate the clinical utility of the reverse transcription-polymerase chain reaction (RT-PCR)-Oxford Nanopore Technology (ONT) sequencing of USH2A mRNA transcripts from nasal epithelial cells to determine the splice-altering effect of candidate variants. Five affected individuals with USH2 or non-syndromic RP who had undergone whole genome sequencing were recruited for further investigation. All individuals had uncertain genotypes in USH2A, including deep intronic rare variants, c.8682-654C>G, c.9055+389G>A, and c.9959-2971C>T; a synonymous variant of uncertain significance, c.2139C>T; p.(Gly713=); and a predicted loss of function duplication spanning an intron/exon boundary, c.3812-3_3837dup p.(Met1280Ter). In silico assessment using SpliceAI provided splice-altering predictions for all candidate variants which were investigated using ONT sequencing. All predictions were found to be accurate; however, in the case of c.3812-3_3837dup, the outcome was a complex cryptic splicing pattern with predominant in-frame exon 18 skipping and a low level of exon 18 inclusion leading to the predicted stop gain. This study detected and functionally characterised simple and complex mis-splicing patterns in USH2A arising from previously unknown deep intronic variants and previously reported variants of uncertain significance, confirming the pathogenicity of the variants.


Assuntos
Proteínas da Matriz Extracelular , Splicing de RNA , Síndromes de Usher , Humanos , Proteínas da Matriz Extracelular/genética , Síndromes de Usher/genética , Feminino , Masculino , Splicing de RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Éxons/genética , Mutação/genética , Retinose Pigmentar/genética , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Íntrons/genética , Pessoa de Meia-Idade
2.
Ophthalmic Genet ; : 1-6, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092760

RESUMO

BACKGROUND: Biallelic pathogenic variants in CDH23 can cause Usher syndrome type I (USH1), typically characterized by sensorineural hearing loss, variable vestibular areflexia, and a progressive form of rod-cone dystrophy. While missense variants in CDH23 can cause DFNB12 deafness, other variants can affect the cadherin 23 function, more severely causing Usher syndrome type I D. The main purpose of our study is to describe the genotypes and phenotypes of patients with mild retinitis pigmentosa (RP), including sector RP with two pathogenic variants in CDH23. MATERIALS AND METHODS: Clinical examination included medical history, comprehensive ophthalmologic examination, and multimodal retinal imaging, and in case 1 and 2, full-field electroretinography (ERG). Genetic analysis was performed in all cases, and segregation testing of proband relatives was performed in case 1 and 3. RESULTS: Three unrelated cases presented with variable clinical phenotype for USH1 and were found to have two pathogenic variants in CDH23, with missense variant, c.5237 G > A: p.Arg1746Gln being common to all. All probands had mild to profound hearing loss. Case 1 and 3 had mild RP with mid peripheral and posterior pole sparing, while case 2 had sector RP. ERG results were consistent with the marked loss of retinal function in both eyes at the level of photoreceptor in case 1 and case 2, with normal peak time in the former. CONCLUSION: Patients harbouring c.5237 G > A: p.Arg1746Gln variants in CDH23 can present with a mild phenotype including sector RP. This can aid in better genetic counselling and in prognostication.

3.
Ophthalmic Physiol Opt ; 44(6): 1188-1201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38989810

RESUMO

INTRODUCTION: Degeneration in choroideremia, unlike typical centripetal photoreceptor degenerations, is centred temporal to the fovea. Once the fovea is affected, the nasal visual field (temporal retina) is relatively spared, and the preferred retinal locus shifts temporally. Therefore, when reading left to right, only the right eye reads into a scotoma. We investigate how this unique property affects the ability to read an eye chart. METHODS: Standard- and low-luminance visual acuity (VA) for right and left eyes were measured with the Early Treatment of Diabetic Retinopathy Study (ETDRS) chart. Letters in each line were labelled by column position. The numbers of letter errors for each position across the whole chart were summed to produce total column error scores for each participant. Macular sensitivity was assessed using microperimetry. Central sensitivity asymmetry was determined by the temporal-versus-nasal central macular difference and subsequently correlated to a weighted ETDRS column error score. Healthy volunteers and participants with X-linked retinitis pigmentosa GTPase regulator associated retinitis pigmentosa (RPGR-RP) were used as controls. RESULTS: Thirty-nine choroideremia participants (median age 44.9 years [IQR 35.7-53.5]), 23 RPGR-RP participants (median age 30.8 years [IQR 26.5-40.5]) and 35 healthy controls (median age 23.8 years [IQR 20.3-29.0]) were examined. In choroideremia, standard VA in the right eye showed significantly greater ETDRS column errors on the temporal side compared with the nasal side (p = 0.002). This significantly correlated with greater asymmetry in temporal-versus-nasal central macular sensitivity (p = 0.04). No significant patterns in ETDRS column errors or central macular sensitivity were seen in the choroideremia left eyes, nor in RPGR-RP and control eyes. CONCLUSION: Difficulty in tracking across lines during ETDRS VA testing may cause excess errors independent of true VA. VA assessment with single-letter optotype systems may be more suitable, particularly for patients with choroideremia, and potentially other retinal diseases with asymmetric central macular sensitivity or large central scotomas including geographic atrophy.


Assuntos
Coroideremia , Acuidade Visual , Campos Visuais , Humanos , Coroideremia/fisiopatologia , Coroideremia/diagnóstico , Acuidade Visual/fisiologia , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Campos Visuais/fisiologia , Macula Lutea/fisiopatologia , Macula Lutea/diagnóstico por imagem , Adulto Jovem , Leitura , Tomografia de Coerência Óptica/métodos , Testes Visuais/métodos , Testes de Campo Visual/métodos
4.
Diagnostics (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39061682

RESUMO

Stargardt disease (STGD1), associated with biallelic variants in the ABCA4 gene, is the most common heritable macular dystrophy and is currently untreatable. To identify potential treatment targets, we characterized surviving STGD1 photoreceptors. We used clinical data to identify macular regions with surviving STGD1 photoreceptors. We compared the hyperreflective bands in the optical coherence tomographic (OCT) images that correspond to structures in the STGD1 photoreceptor inner segments to those in controls. We used adaptive optics scanning light ophthalmoscopy (AO-SLO) to study the distribution of cones and AO-OCT to evaluate the interface of photoreceptors and retinal pigment epithelium (RPE). We found that the profile of the hyperreflective bands differed dramatically between patients with STGD1 and controls. AO-SLOs showed patches in which cone densities were similar to those in healthy retinas and others in which the cone population was sparse. In regions replete with cones, there was no debris at the photoreceptor-RPE interface. In regions with sparse cones, there was abundant debris. Our results raise the possibility that pharmaceutical means may protect surviving photoreceptors and so mitigate vision loss in patients with STGD1.

5.
Front Genet ; 15: 1409016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055259

RESUMO

Introduction: Inherited retinal diseases (IRDs) affect ∼4.5 million people worldwide. Elusive pathogenic variants in over 280 genes are associated with one or more clinical forms of IRDs. It is necessary to understand the complex interaction among retinal cell types and pathogenic genes by constructing a regulatory network. In this study, we attempt to establish a panoramic expression view of the cooperative work in retinal cells to understand the clinical manifestations and pathogenic bases underlying IRDs. Methods: Single-cell RNA sequencing (scRNA-seq) data on the retinas from 35 retina samples of 3 species (human, mouse, and zebrafish) including 259,087 cells were adopted to perform a comparative analysis across species. Bioinformatic tools were used to conduct weighted gene co-expression network analysis (WGCNA), single-cell regulatory network analysis, cell-cell communication analysis, and trajectory inference analysis. Results: The cross-species comparison revealed shared or species-specific gene expression patterns at single-cell resolution, such as the stathmin family genes, which were highly expressed specifically in zebrafish Müller glias (MGs). Thirteen gene modules were identified, of which nine were associated with retinal cell types, and Gene Ontology (GO) enrichment of module genes was consistent with cell-specific highly expressed genes. Many IRD genes were identified as hub genes and cell-specific regulons. Most IRDs, especially the retinitis pigmentosa (RP) genes, were enriched in rod-specific regulons. Integrated expression and transcription regulatory network genes, such as congenital stationary night blindness (CSNB) genes GRK1, PDE6B, and TRPM1, showed cell-specific expression and transcription characteristics in either rods or bipolar cells (BCs). IRD genes showed evolutionary conservation (GNAT2, PDE6G, and SAG) and divergence (GNAT2, MT-ND4, and PDE6A) along the trajectory of photoreceptors (PRs) among species. In particular, the Leber congenital amaurosis (LCA) gene OTX2 showed high expression at the beginning of the trajectory of both PRs and BCs. Conclusion: We identified molecular pathways and cell types closely connected with IRDs, bridging the gap between gene expression, genetics, and pathogenesis. The IRD genes enriched in cell-specific modules and regulons suggest that these diseases share common etiological bases. Overall, mining of interspecies transcriptome data reveals conserved transcriptomic features of retinas across species and promising applications in both normal retina anatomy and retina pathology.

6.
Front Ophthalmol (Lausanne) ; 4: 1415393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045093

RESUMO

Purpose: Female carriers of X-linked inherited retinal diseases (IRDs) can show highly variable phenotypes and disease progression. Vascular reactivity, a potential disease biomarker, has not been investigated in female IRD carriers. In this study, functional optical coherence tomography angiography (OCT-A) was used to dynamically assess the retinal microvasculature of X-linked IRD carriers. Methods: Genetically confirmed female carriers of IRDs (choroideremia or X-linked retinitis pigmentosa), and healthy women were recruited. Macular angiograms (3x3mm, Zeiss Plex Elite 9000) were obtained in 36 eyes of 15 X-linked IRD female carriers and 21 age-matched control women. Two tests were applied to test vascular reactivity: (i) mild hypoxia and (ii) handgrip test, to induce a vasodilatory or vasoconstrictive response, respectively. Changes to vessel density (VD) and vessel length density (VLD) were independently evaluated during each of the tests for both the superficial and deep capillary plexuses. Results: In the control group, the superficial and deep VD decreased during the handgrip test (p<0.001 and p=0.037, respectively). Mean superficial VLD also decreased during the handgrip test (p=0.025), while the deep plexus did not change significantly (p=0.108). During hypoxia, VD and VLD increased in the deep plexus (p=0.027 and p=0.052, respectively) but not in the superficial plexus. In carriers, the physiologic vascular responses seen in controls were not observed in either plexus during either test, with no difference in VD or VLD noted (all p>0.05). Conclusions: Functional OCT-A is a useful tool to assess dynamic retinal microvascular changes. Subclinical impairment of the physiological vascular responses seen in carriers of X-linked IRDs may serve as a valuable clinical biomarker.

7.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920696

RESUMO

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.


Assuntos
Autofagia , Coroideremia , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Proteínas rab de Ligação ao GTP , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Coroideremia/patologia , Coroideremia/genética , Coroideremia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Biológicos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
8.
Exp Eye Res ; 245: 109980, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914302

RESUMO

The dog retina contains a central macula-like region, and there are reports of central retinal disorders in dogs with shared genetic etiologies with humans. Defining central/peripheral gene expression profiles may provide insight into the suitability of dogs as models for human disorders. We determined central/peripheral posterior eye gene expression profiles in dogs and interrogated inherited retinal and macular disease-associated genes for differential expression between central and peripheral regions. Bulk tissue RNA sequencing was performed on 8 mm samples of the dog central and superior peripheral regions, sampling retina and retinal pigmented epithelium/choroid separately. Reads were mapped to CanFam3.1, read counts were analyzed to determine significantly differentially expressed genes (DEGs). A similar analytic pipeline was used with a published bulk-tissue RNA sequencing human dataset. Pathways and processes involved in significantly DEGs were identified (Database for Annotation, Visualization and Integrated Discovery). Dogs and humans shared the extent and direction of central retinal differential gene expression, with multiple shared biological pathways implicated in differential expression. Many genes implicated in heritable retinal disorders in dogs and humans were differentially expressed between central and periphery. Approximately half of genes associated with human age-related macular degeneration were differentially expressed in human and dog tissues. We have identified similarities and differences in central/peripheral gene expression profiles between dogs and humans which can be applied to further define the relevance of dogs as models for human retinal disorders.


Assuntos
Retina , Cães , Animais , Humanos , Retina/metabolismo , Regulação da Expressão Gênica/fisiologia , Perfilação da Expressão Gênica , Modelos Animais de Doenças , Transcriptoma , Epitélio Pigmentado da Retina/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Masculino , Feminino , Corioide/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38847892

RESUMO

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

10.
J Clin Med ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38892829

RESUMO

Background/Objectives: Gene therapy's emergence has made molecular diagnosis for inherited retinal diseases clinically significant. Free genetic testing panels have improved testing access in clinical practice, yet the interpretation of results, especially variants of unknown significance (VUS), remains challenging and requires expertise. This study shares our experience in utilizing sponsored IRD panel tests by Invitae and Blueprint Genetics (BG), reporting their positivity rates, and comparing their reclassification of variants through amendments. Methods: This retrospective study analyzed genetic test reports from patients who underwent testing via Invitae or BG panels. A positive test was determined if there was a pathogenic mutation in an autosomal dominant gene, two pathogenic mutations in an autosomal recessive gene, or a pathogenic mutation in an X-linked gene in a male patient. Results: The testing positivity rates were 34.9% for Invitae (n = 109) and 42.1% for BG (n = 107). Invitae had more pathogenic variants per report (0.87 vs. 0.58 variants, p = 0.0038) and issued more amendments than BG (0.54 vs. 0.03 amendments; p < 0.01). Of the Invitae variant classification changes, 66.2% switched a VUS to benign. In the BG group, 75% of variant reclassifications changed a VUS to pathogenic. As a result of the Invitae amendments, 88% did not change the overall report result. Conclusions: While free-of-charge genetic testing panels offer valuable insights for diagnosing IRD, limitations such as low diagnostic yield and variant classification discrepancies persist between Invitae and BG. VUS should not be considered pathogenic in the clinical decision-making process. Careful interpretation of genetic testing is required.

11.
Am J Ophthalmol Case Rep ; 34: 102064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707951

RESUMO

Purpose: To describe examination and findings in a case of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) with particular focus on the ocular sequelae from diabetes. Observations: Neovascular glaucoma is not a common manifestation of MELAS. Conclusions and Importance: We present a rare case of neovascular glaucoma in a patient with MELAS with a history of diabetes, hearing loss, and macular dystrophy. MELAS should be suspected in patients with this constellation of symptoms.

12.
Genome Biol ; 25(1): 123, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760655

RESUMO

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Assuntos
Cromatina , Retina , Doenças Retinianas , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Cromatina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Regiões Promotoras Genéticas , Loci Gênicos , Peixe-Zebra/genética , Sequências Reguladoras de Ácido Nucleico , Genoma Humano
14.
J Clin Med ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38592336

RESUMO

Purpose: Mutations in Topoisomerase I-binding RS protein (TOPORS) have been previously documented and have been described to result in pathological autosomal dominant retinitis pigmentosa (adRP). In our study, we describe the various genotypes and clinical/phenotypic manifestations of TOPORS-related mutations of our unique patient population in Rural Appalachia. Methods: The medical records of 416 patients with inherited retinal disease at the West Virginia University Eye Institute who had undergone genetic testing between the years of 2015-2022 were reviewed. Patients found to have pathologic RP and mutations related to TOPORS were then analyzed. Results: In total, 7 patients (ages 12-70) were identified amongst three unique families. All patients were female in our study. The average follow-up period was 7.7 years. A mother (70 yr) and daughter (51 yr) had a novel heterozygous nonsense point mutation in TOPORS c.2431C > T, p.Gln811X (Exon 3) that led to premature termination of the desired protein resulting in early onset vision loss, cataract formation, and visual field restriction. The mother developed a full-thickness macular hole which was successfully repaired. Five other patients were found to have previously described TOPORS mutations. Visual field loss was progressive with age in both cohorts. Conclusions: Seven patients at our institution were identified to have mutations in TOPORS resulting in autosomal dominant retinitis pigmentosa. Two patients were found to have novel truncating mutations in the TOPORS gene resulting in profound night blindness and visual field loss, recurrent macular edema, and in one individual, epiretinal membrane formation leading to a macular hole which was able to be successfully repaired.

15.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559186

RESUMO

Paired-class homeodomain transcription factors (HD TFs) play essential roles in vertebrate development, and their mutations are linked to human diseases. One unique feature of paired-class HD is cooperative dimerization on specific palindrome DNA sequences. Yet, the functional significance of HD cooperative dimerization in animal development and its dysregulation in diseases remain elusive. Using the retinal TF Cone-rod Homeobox (CRX) as a model, we have studied how blindness-causing mutations in the paired HD, p.E80A and p.K88N, alter CRX's cooperative dimerization, lead to gene misexpression and photoreceptor developmental deficits in dominant manners. CRXE80A maintains binding at monomeric WT CRX motifs but is deficient in cooperative binding at dimeric motifs. CRXE80A's cooperativity defect impacts the exponential increase of photoreceptor gene expression in terminal differentiation and produces immature, non-functional photoreceptors in the CrxE80A retinas. CRXK88N is highly cooperative and localizes to ectopic genomic sites with strong enrichment of dimeric HD motifs. CRXK88N's altered biochemical properties disrupt CRX's ability to direct dynamic chromatin remodeling during development to activate photoreceptor differentiation programs and silence progenitor programs. Our study here provides in vitro and in vivo molecular evidence that paired-class HD cooperative dimerization regulates neuronal development and dysregulation of cooperative binding contributes to severe dominant blinding retinopathies.

16.
Ophthalmic Genet ; : 1-5, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619019

RESUMO

PURPOSE: This study describes how the diagnosis of Usher syndrome was revised to PRPS1-associated retinopathy and Charcot-Marie-Tooth disease type 5. CASE REPORT: A 38-year-old female with bilaterally subnormal vision and non-congenital hearing loss was initially diagnosed with Usher syndrome, based on finding variants in three genes (MYO7A, USH2A, and PCDH15), was re-evaluated at the inherited retinal disorders clinic. She had asymmetric retinopathy and right macular pseudocoloboma. She was also found to have myopathic facies, poor grip strength and atrophy of the calf muscles. Whole exome sequencing including variants in PRPS1 showed a variant (NM_002764.4:c.287 G > A; p.Arg96Gln), which was not detected by targeted Sanger sequencing of the DNA from her mother and sister. CONCLUSION: The constellation of asymmetric retinopathy and non-congenital hearing impairment should prompt the clinician to search for other diagnoses that may not be covered by an Usher syndrome next generation sequencing panel. Interpretation of genetic testing results should be correlated with a detailed clinical phenotype.

17.
Clin Genet ; 106(3): 258-266, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38576124

RESUMO

This research aims to compile recent clinical and genetic data from Turkish patients with inherited retinal disorders and evaluate the effectiveness of targeted Next-generation sequencing panels. The study included Turkish individuals with hereditary retinal diseases who visited the Medical Genetic Department of Erciyes University between 2019 and 2022. One proband per family was selected based on eligibility. We used Hereditary Disorder Solution (HDS) by Sophia Genetics and performed next-generation sequencing (NGS) with Illumina NextSeq-500. Bioinformatics analysis using Sophia DDM® SaaS algorithms and ACMG guidelines classified genomic changes. The study involved 354 probands. Disease-causing variants were found in 58.1% of patients, with ABCA4, USH2A, RDH12, and EYS being the most frequently implicated genes. Forty-eight novel variants were detected. This study enhances the knowledge of clinical diagnoses, symptom onset, inheritance patterns, and genetic details for Turkish individuals with hereditary retinal disease. It contributes to broader health strategies by enabling comparisons with other studies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Doenças Retinianas , Humanos , Turquia , Masculino , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Feminino , Adulto , Criança , Adolescente , Pessoa de Meia-Idade , Linhagem , Proteínas do Olho/genética , Predisposição Genética para Doença , Oxirredutases do Álcool/genética , Transportadores de Cassetes de Ligação de ATP/genética , Pré-Escolar , Biologia Computacional/métodos , Estudos de Coortes , Adulto Jovem , Testes Genéticos/métodos , Lactente , Proteínas da Matriz Extracelular
18.
Case Rep Ophthalmol ; 15(1): 230-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500542

RESUMO

Introduction: The GNB1 (guanine nucleotide-binding protein, ß1) gene encodes for the ubiquitous ß1 subunit of heterotrimeric G proteins, which are associated with G-protein-coupled receptors (GPCRs). GNB1 mutations cause a neurodevelopmental disorder characterized by a broad clinical spectrum. A novel variant has recently been confirmed in a case of rod-cone dystrophy. Case Presentation: We describe the second confirmed case of a classical rod-cone dystrophy associated with a mutation located in exon 6 of GNB1 [NM_002074.5:c.217G>C, p.(Ala73Pro)] in a 56-year-old patient also presenting mild intellectual disability, attention deficit/hyperactivity disorder, and truncal obesity. Conclusion: This paper confirms the role of GNB1 in the pathogenesis of a classic rod-cone dystrophy and highlights the importance of including this gene in the genetic analysis panel for inherited retinal diseases.

19.
Front Cell Dev Biol ; 12: 1332944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500685

RESUMO

The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.

20.
Ophthalmol Retina ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522615

RESUMO

OBJECTIVE: To examine the molecular causes of Schubert-Bornschein (S-B) congenital stationary night blindness (CSNB), clinically characterize in detail, and assess genotype-phenotype correlations for retinal function and structure. DESIGN: Retrospective, longitudinal, single-center case series. PARTICIPANTS: One hundred twenty-two patients with S-B CSNB attending Moorfields Eye Hospital, United Kingdom. METHODS: All case notes, results of molecular genetic testing, and OCT were reviewed. MAIN OUTCOME MEASURES: Molecular genetics, presenting complaints, rates of nystagmus, nyctalopia, photophobia, strabismus, color vision defects and spherical equivalent refraction (SER). Retinal thickness, outer nuclear layer (ONL) thickness, and ganglion cell layer + inner plexiform layer (GCL+IPL) thickness from OCT imaging. RESULTS: X-linked (CACNA1F and NYX) and autosomal recessive (TRPM1, GRM6, GPR179 and CABP4) genotypes were identified. The mean (± standard deviation) reported age of onset was 4.94 ± 8.99 years. Over the follow-up period, 95.9% of patients reported reduced visual acuity (VA), half had nystagmus, and 64.7% reported nyctalopia. Incomplete CSNB (iCSNB) patients more frequently had nystagmus and photophobia. Nyctalopia was similar for iCSNB and complete CSNB (cCSNB). Color vision data were limited but more defects were found in iCSNB. None of these clinical differences met statistical significance. There was no significant difference between groups in VA, with a mean of 0.46 logarithm of the minimum angle of resolution, and VA remained stable over the course of follow-up. Complete congenital stationary night blindness patients, specifically those with NYX and TRPM1 variants, were more myopic. CACNA1F patients showed the largest refractive variability, and the CABP4 patient was hyperopic. No significant differences were found in OCT structural analysis during the follow-up period. CONCLUSIONS: Retinal structure in CSNB is stationary and no specific genotype-structure correlates were identified. Visual acuity seems to be relatively stable, with rare instances of progression. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA