Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Inform ; : e202300160, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973776

RESUMO

The insulin superfamily proteins (ISPs), in particular, insulin, IGFs and relaxin proteins are key modulators of animal physiology. They are known to have evolved from the same ancestral gene and have diverged into proteins with varied sequences and distinct functions, but maintain a similar structural architecture stabilized by highly conserved disulphide bridges. The recent surge of sequence data and the structures of these proteins prompted a need for a comprehensive analysis, which connects the evolution of these sequences (427 sequences) in the light of available functional and structural information including representative complex structures of ISPs with their cognate receptors. This study reveals (a) unusually high sequence conservation of IGFs (>90 % conservation in 184 sequences) and provides a possible structure-based rationale for such high sequence conservation; (b) provides an updated definition of the receptor-binding signature motif of the functionally diverse relaxin family members (c) provides a probable non-canonical C-peptide cleavage site in a few insulin sequences. The high conservation of IGFs appears to represent a classic case of resistance to sequence diversity exerted by physiologically important interactions with multiple partners. We also propose a probable mechanism for C-peptide cleavage in a few distinct insulin sequences and redefine the receptor-binding signature motif of the relaxin family. Lastly, we provide a basis for minimally modified insulin mutants with potential therapeutic application, inspired by concomitant changes observed in other insulin superfamily protein members supported by molecular dynamics simulation.

2.
Angew Chem Int Ed Engl ; 62(6): e202216365, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515186

RESUMO

Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.


Assuntos
Relaxina , Relaxina/química , Relaxina/metabolismo , Dissulfetos/química , Técnicas de Síntese em Fase Sólida , Proteínas/química , Insulina/química , Receptores Acoplados a Proteínas G/metabolismo
3.
Amino Acids ; 51(4): 619-626, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30604098

RESUMO

The insulin superfamily is a group of homologous proteins that are further divided into the insulin family and relaxin family according to their distinct receptors. All insulin superfamily members contain three absolutely conserved disulfide linkages and a nonchiral Gly residue immediately following the first B-chain cysteine. The functionality of this conserved Gly residue in the insulin family has been studied by replacing it with natural L-amino acids or the corresponding unnatural D-amino acids. However, such analysis has not been conducted on relaxin family members. In the present study, we conducted chiral mutagenesis on the conserved B11Gly of the chimeric relaxin family peptide R3/I5, which is an efficient agonist for receptor RXFP3 and RXFP4. Similar to the effects on insulin family foldability, L-Ala or L-Ser substitution completely abolished the in vitro refolding of a recombinant R3/I5 precursor; whereas, D-Ala or D-Ser substitution had no detrimental effect on refolding of a semi-synthetic R3/I5 precursor, suggesting that the conserved Gly residue controls the foldability of relaxin family members. In contrast to the effect on insulin family activity, D-Ala or D-Ser replacement had no detrimental effect on the binding and activation potencies of the mature R3/I5 towards both RXFP3 and RXFP4, suggesting that the conserved Gly residue is irrelevant to the relaxin family's activity. The present study revealed functionality of the conserved B-chain Gly residue for a relaxin family peptide for the first time, providing an overview of its contribution to foldability and activity of the insulin superfamily.


Assuntos
Glicina/metabolismo , Insulina/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Relaxina/metabolismo , Glicina/química , Glicina/genética , Humanos , Insulina/química , Insulina/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Relaxina/química , Relaxina/genética
4.
Mol Cell Biol ; 37(19)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716948

RESUMO

Insulin-like growth factor type 2 (IGF2) receptor (IGF2R) recognizes mannose 6-phosphate-containing molecules and IGF2 and plays an important role in many pathophysiological processes, including gut mucosal adaptation. However, the mechanisms that control cellular IGF2R abundance are poorly known. MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) critically regulate gene expression programs in mammalian cells by modulating the stability and translation of target mRNAs. Here we report that miRNA 195 (miR-195) and RBP CUG-binding protein 1 (CUGBP1) jointly regulate IGF2R expression at the posttranscriptional level in intestinal epithelial cells. Both miR-195 and CUGBP1 interacted with the 3' untranslated region (3'-UTR) of Igf2r mRNA, and the association of CUGBP1 with Igf2r mRNA enhanced miR-195 binding to Igf2r mRNA. Ectopically expressed CUGBP1 and miR-195 repressed IGF2R translation cooperatively without altering the stability of Igf2r mRNA. Importantly, the miR-195- and CUGBP1-repressed levels of cellular IGF2R led to a disruption in the structure of the trans-Golgi network. These findings indicate that IGF2R expression is controlled posttranscriptionally by two factors that associate with Igf2r mRNA and suggest that miR-195 and CUGBP1 dampen IGF signaling by inhibiting IGF2R translation.


Assuntos
Proteínas CELF1/metabolismo , MicroRNAs/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteínas CELF1/genética , Células CACO-2 , Regulação da Expressão Gênica , Humanos , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/química
5.
J Pept Sci ; 22(5): 260-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26910514

RESUMO

The synthesis of insulin has inspired fundamental advances in the art of peptide science while simultaneously revealing the structure-function relationship of this centrally important metabolic hormone. This review highlights milestones in the chemical synthesis of insulin that can be divided into two separate approaches: (i) disulfide bond formation driven by protein folding and (ii) chemical reactivity-directed sequential disulfide bond formation. Common to the two approaches are the persistent challenges presented by the hydrophobic nature of the individual A-chain and B-chain and the need for selective disulfide formation under mildly oxidative conditions. The extension and elaboration of these synthetic approaches have been ongoing within the broader insulin superfamily. These structurally similar peptides include the insulin-like growth factors and also the related peptides such as relaxin that signal through G-protein-coupled receptors. After a half-century of advances in insulin chemistry, we have reached a point where synthesis is no longer limiting structural and biological investigation within this family of peptide hormones. The future will increasingly focus on the refinement of structure to meet medicinal purposes that have long been pursued, such as the development of a glucose-sensitive insulin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Insulina/química , Peptídeos/síntese química , Relaxina/química , Somatomedinas/química , Animais , Dissulfetos/química , Humanos , Ligação de Hidrogênio , Estrutura Molecular , Dobramento de Proteína
6.
Gen Comp Endocrinol ; 209: 93-105, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079565

RESUMO

Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.


Assuntos
Evolução Biológica , Peixes/genética , Mamíferos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Relaxina/genética , Animais , Humanos , Ligantes , Família Multigênica , Filogenia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Peptídeos/química , Receptores de Peptídeos/fisiologia , Relaxina/química , Relaxina/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA