Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.278
Filtrar
1.
Biol Psychiatry ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950809

RESUMO

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of Fragile X syndrome (FXS), contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of FXS. Recent studies in Fmr1 KO mice have demonstrated differences in activity of cortical interneurons and a delayed switch in the polarity of GABA signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide, could rescue synaptic circuit phenotypes in primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrate that layer (L) 2/3 pyramidal neurons in S1 of Fmr1 KO mice show a higher frequency of synchronous events at postnatal day (P) 6 compared to wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (P5-P14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of L2/3 neurons in S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the FDA-approved diuretic bumetanide.

2.
Front Cell Neurosci ; 18: 1421617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994327

RESUMO

The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.

3.
bioRxiv ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39005261

RESUMO

The CA3 region is central to hippocampal function during learning and memory because of its unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have an unusually high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining runaway excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a group of dendrite-targeting, hippocampal GABAergic neurons defined by expression of the synaptogenic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons impairs memory discrimination by inhibiting CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during contextual memory whose activity may be specifically disrupted in some brain disorders.

4.
Cogn Neurodyn ; 18(3): 1047-1059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826655

RESUMO

The medial dendrites (MDs) of granule cells (GCs) receive spatial information through the medial entorhinal cortex (MEC) from the entorhinal cortex in the rat hippocampus while the distal dendrites (DDs) of GCs receive non-spatial information (sensory inputs) through the lateral entorhinal cortex (LEC). However, it is unclear how information processing through the two pathways is managed in GCs. In this study, we investigated associative information processing between two independent inputs to MDs and DDs. First, in physiological experiments, to compare response characteristics between MDs and DDs, electrical stimuli comprising five pulses were applied to the MPP or LPP in rat hippocampal slices. These stimuli transiently decreased the excitatory postsynaptic potentials (EPSPs) of successive input pulses to MDs, whereas EPSPs to DDs showed sustained responses. Next, in computational experiments using a local network model obtained by fitting of the physiological experimental data, we compared associative information processing between DDs and MDs. The results showed that the temporal pattern sensitivity for burst inputs to MDs depended on the frequency of the random pulse inputs applied to DDs. On the other hand, with lateral inhibition to GCs from interneurons, the temporal pattern sensitivity for burst inputs to MDs was enhanced or tuned up according to the frequency of the random pulse inputs to the other cells. Thus, our results suggest that the temporal pattern sensitivity of spatial information depends on the non-spatial inputs to GCs.

5.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921237

RESUMO

Recurrent neural networks (RNNs) transmit information over time through recurrent connections. In contrast, biological neural networks use many other temporal processing mechanisms. One of these mechanisms is the inter-neuron delays caused by varying axon properties. Recently, this feature was implemented in echo state networks (ESNs), a type of RNN, by assigning spatial locations to neurons and introducing distance-dependent inter-neuron delays. These delays were shown to significantly improve ESN task performance. However, thus far, it is still unclear why distance-based delay networks (DDNs) perform better than ESNs. In this paper, we show that by optimizing inter-node delays, the memory capacity of the network matches the memory requirements of the task. As such, networks concentrate their memory capabilities to the points in the past which contain the most information for the task at hand. Moreover, we show that DDNs have a greater total linear memory capacity, with the same amount of non-linear processing power.

6.
Biochem Biophys Res Commun ; 725: 150272, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901224

RESUMO

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.


Assuntos
Neurônios GABAérgicos , Interneurônios , Ketamina , Parvalbuminas , Córtex Pré-Frontal , Sinapses , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Masculino , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas de Aminoácidos Excitatórios/farmacologia
7.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886063

RESUMO

Persistent activity in excitatory pyramidal cells (PYRs) is a putative mechanism for maintaining memory traces during working memory. We have recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon that could serve as a substrate for persistent activity in PYRs through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modeling and mathematical analysis showed that the slowly inactivating potassium current KV1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the KV1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a coexisting stable fixed point corresponding to a nonspiking quiescent state. As KV1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation (HB) and then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without KV1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical HB, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable, KV1 inactivation.


Assuntos
Interneurônios , Modelos Neurológicos , Parvalbuminas , Parvalbuminas/metabolismo , Interneurônios/fisiologia , Interneurônios/metabolismo , Animais , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/metabolismo , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Córtex Entorrinal/fisiologia , Córtex Entorrinal/metabolismo , Masculino
8.
Hippocampus ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874439

RESUMO

Synaptic excitation and inhibition are essential for neuronal communication. However, the variables that regulate synaptic excitation and inhibition in the intact brain remain largely unknown. Here, we examined how spike transmission and suppression between principal cells (PCs) and interneurons (INTs) are modulated by activity history, brain state, cell type, and somatic distance between presynaptic and postsynaptic neurons by applying cross-correlogram analyses to datasets recorded from the dorsal hippocampus and medial entorhinal cortex (MEC) of 11 male behaving and sleeping Long Evans rats. The strength, temporal delay, and brain-state dependency of the spike transmission and suppression depended on the subregions/layers. The spike transmission probability of PC-INT excitatory pairs that showed short-term depression versus short-term facilitation was higher in CA1 and lower in CA3. Likewise, the intersomatic distance affected the proportion of PC-INT excitatory pairs that showed short-term depression and facilitation in the opposite manner in CA1 compared with CA3. The time constant of depression was longer, while that of facilitation was shorter in MEC than in CA1 and CA3. During sharp-wave ripples, spike transmission showed a larger gain in the MEC than in CA1 and CA3. The intersomatic distance affected the spike transmission gain during sharp-wave ripples differently in CA1 versus CA3. A subgroup of MEC layer 3 (EC3) INTs preferentially received excitatory inputs from and inhibited MEC layer 2 (EC2) PCs. The EC2 PC-EC3 INT excitatory pairs, most of which showed short-term depression, exhibited higher spike transmission probabilities than the EC2 PC-EC2 INT and EC3 PC-EC3 INT excitatory pairs. EC2 putative stellate cells exhibited stronger spike transmission to and received weaker spike suppression from EC3 INTs than EC2 putative pyramidal cells. This study provides detailed comparisons of monosynaptic interaction dynamics in the hippocampal-entorhinal loop, which may help to elucidate circuit operations.

9.
Cerebellum ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850484

RESUMO

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.

10.
Inflamm Regen ; 44(1): 24, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750507

RESUMO

It is known that maternal immunoglobulins (Igs) are transferred to the offspring across the placenta. However, receiving maternal Igs, especially before the blood-brain barrier (BBB) is formed in the offspring's brain, carries the risk of transferring some brain-reactive Igs. It is thus hypothesized that there may be some unknown benefit to the offspring's brain that overweighs this risk. In this study, we show that the Ig detected in the embryonic/perinatal mouse brain is IgG not produced by the pups themselves, but is basically transferred from the mother across the placenta using the neonatal Fc receptor (FcRn) during embryonic stages. The amount of IgG in the brain gradually decreases after birth, and almost disappears within 3 weeks postnatally. IgG is detected on axon bundles, microglia, and some meningeal cells, including border-associated macrophages (BAMs), endothelial cells, and fibroblasts. Using Fcer1g knock-out (KO) mice, we show that BAMs and microglia receive maternal IgG in an Fc receptor γ chain (FcRγ)-dependent manner, but IgG on other meningeal cells and axon bundles is received independently of the FcRγ. These results suggest that maternal IgG may be used in multiple ways by different mechanisms. In maternal IgG-deficient mice, the number of interneurons in the cerebral cortex is not altered around birth but is reduced postnatally, suggesting that receipt of maternal IgG is necessary for the maintenance of cortical interneurons in the postnatal period. These data suggest that maternal IgG has an important function in the developing brain, where neither obvious inflammation nor infection is observed.

11.
Brain ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748482

RESUMO

ATP-sensitive potassium (KATP) channels couple cell metabolism to cellular electrical activity. Humans affected by severe activating mutations in KATP channels suffer from developmental delay, epilepsy, and neonatal diabetes (DEND syndrome). While the aetiology of diabetes in DEND syndrome is well understood, the pathophysiology of the neurological symptoms remains unclear. We hypothesised that impaired activity of parvalbumin-positive interneurons (PV-INs) may result in seizures and cognitive problems. We found, by performing electrophysiological experiments, that expressing the DEND mutation Kir6.2-V59M selectively in mouse PV-INs reduced intrinsic gamma frequency preference and short-term depression as well as disturbed cognition-associated gamma oscillations and hippocampal sharp waves. Furthermore, the risk of seizures was increased and the day-night shift in gamma activity disrupted. Blocking KATP channels with tolbutamide partially rescued the network oscillations. The non-reversible part may, to some extent, result from observed altered PV-IN dendritic branching and PV-IN arrangement within CA1. In summary, PV-INs play a key role in DEND syndrome, and this provides a framework for establishing treatment options.

12.
Cell Rep ; 43(6): 114295, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796850

RESUMO

Anxiety plays a key role in guiding behavior in response to potential threats. Anxiety is mediated by the activation of pyramidal neurons in the ventral hippocampus (vH), whose activity is controlled by GABAergic inhibitory interneurons. However, how different vH interneurons might contribute to anxiety-related processes is unclear. Here, we investigate the role of vH parvalbumin (PV)-expressing interneurons while mice transition from safe to more anxiogenic compartments of the elevated plus maze (EPM). We find that vH PV interneurons increase their activity in anxiogenic EPM compartments concomitant with dynamic changes in inhibitory interactions between PV interneurons and pyramidal neurons. By optogenetically inhibiting PV interneurons, we induce an increase in the activity of vH pyramidal neurons and persistent anxiety. Collectively, our results suggest that vH inhibitory microcircuits may act as a trigger for enduring anxiety states.


Assuntos
Ansiedade , Hipocampo , Interneurônios , Parvalbuminas , Células Piramidais , Animais , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Ansiedade/metabolismo , Hipocampo/metabolismo , Camundongos , Células Piramidais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Optogenética
13.
Biochem Pharmacol ; : 116298, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782077

RESUMO

The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.

14.
Cell Rep ; 43(6): 114266, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787724

RESUMO

Fragile X syndrome (FXS) is associated with disrupted cognition and sleep abnormalities. Sleep loss negatively impacts cognitive function, and one untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We tested whether ML297, a hypnotic acting on G-protein-activated inward-rectifying potassium (GIRK) channels, could reverse sleep phenotypes and disrupted memory in Fmr1-/y mice. Fmr1-/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM architecture, altered sleep electroencephalogram (EEG) oscillations, and reduced EEG coherence between cortical areas; these are partially reversed following ML297 administration. Treatment following contextual fear or spatial learning restores disrupted memory consolidation in Fmr1-/y mice. During memory recall, Fmr1-/y mice show an altered balance of activity among hippocampal principal neurons vs. parvalbumin-expressing interneurons; this is partially reversed by ML297. Because sleep disruption could impact neurophysiological phenotypes in FXS, augmenting sleep may improve disrupted cognition in this disorder.


Assuntos
Modelos Animais de Doenças , Eletroencefalografia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Transtornos da Memória , Sono , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/complicações , Transtornos da Memória/fisiopatologia , Transtornos da Memória/tratamento farmacológico , Camundongos , Sono/efeitos dos fármacos , Sono/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Camundongos Endogâmicos C57BL , Medo , Consolidação da Memória/efeitos dos fármacos
15.
Alcohol Clin Exp Res (Hoboken) ; 48(7): 1289-1301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789401

RESUMO

BACKGROUND: Cannabis is increasingly being legalized and socially accepted around the world and is often used with alcohol in social settings. We recently showed that in utero exposure to both substances can alter the density of parvalbumin-expressing interneurons in the hippocampus. Here we investigate the effects of in utero alcohol and cannabis exposure, alone or in combination, on somatostatin- and neuropeptide Y-positive (NPY) interneurons. These are separate classes of interneurons important for network synchrony and inhibition in the hippocampus. METHODS: A 2 (Ethanol, Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either ethanol or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry for somatostatin- and NPY-positive interneurons was performed in 50 µm tissue sections obtained at postnatal day 70. RESULTS: Exposure to THC in utero had region-specific and sex-specific effects on the density of somatostatin-positive interneurons in the adult rat hippocampus. A female-specific decrease in NPY interneuron cell density was observed in the CA1 region following THC exposure. Combined exposure to alcohol and THC reduced NPY neurons selectively in the ventral dentate gyrus hippocampal subfield. However, overall, co-exposure to alcohol and cannabis had neither additive nor synergistic effects on interneuron populations in other areas of the hippocampus. CONCLUSIONS: These results illustrate how alcohol and cannabis exposure in utero may affect hippocampal function by altering inhibitory processes in a sex-specific manner.

16.
Neuron ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38692278

RESUMO

Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.

17.
Neuron ; 112(12): 2031-2044.e7, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38754414

RESUMO

The patterns of synaptic connectivity and physiological properties of diverse neuron types are shaped by distinct gene sets. Our study demonstrates that, in the mouse forebrain, the transcriptional profiles of inhibitory GABAergic interneurons are regulated by Nr4a1, an orphan nuclear receptor whose expression is transiently induced by sensory experiences and is required for normal learning. Nr4a1 exerts contrasting effects on the local axonal wiring of parvalbumin- and somatostatin-positive interneurons, which innervate different subcellular domains of their postsynaptic partners. The loss of Nr4a1 activity in these interneurons results in bidirectional, cell-type-specific transcriptional switches across multiple gene families, including those involved in surface adhesion and repulsion. Our findings reveal that combinatorial synaptic organizing codes are surprisingly flexible and highlight a mechanism by which inducible transcription factors can influence neural circuit structure and function.


Assuntos
Neurônios GABAérgicos , Interneurônios , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Interneurônios/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Somatostatina/metabolismo , Somatostatina/genética , Parvalbuminas/metabolismo , Camundongos Knockout , Masculino , Sinapses/metabolismo
18.
Adv Sci (Weinh) ; : e2306294, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757379

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social communication disability and stereotypic behavior. This study aims to investigate the impact of prenatal exposure to 1-nitropyrene (1-NP), a key component of motor vehicle exhaust, on autism-like behaviors in a mouse model. Three-chamber test finds that prenatal 1-NP exposure causes autism-like behaviors during the weaning period. Patch clamp shows that inhibitory synaptic transmission is reduced in medial prefrontal cortex of 1-NP-exposed weaning pups. Immunofluorescence finds that prenatal 1-NP exposure reduces the number of prefrontal glutamate decarboxylase 67 (GAD67) positive interneurons in fetuses and weaning pups. Moreover, prenatal 1-NP exposure retards tangential migration of GAD67-positive interneurons and downregulates interneuron migration-related genes, such as Nrg1, Erbb4, and Sema3F, in fetal forebrain. Mechanistically, prenatal 1-NP exposure reduces hydroxymethylation of interneuron migration-related genes through inhibiting ten-eleven translocation (TET) activity in fetal forebrain. Supplement with alpha-ketoglutarate (α-KG), a cofactor of TET enzyme, reverses 1-NP-induced hypohydroxymethylation at specific sites of interneuron migration-related genes. Moreover, α-KG supplement alleviates 1-NP-induced migration retardation of interneurons in fetal forebrain. Finally, maternal α-KG supplement improves 1-NP-induced autism-like behaviors in weaning offspring. In conclusion, prenatal 1-NP exposure causes autism-like behavior partially by altering DNA hydroxymethylation of interneuron migration-related genes in developing brain.

19.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637152

RESUMO

Canonically, action potentials of most mammalian neurons initiate at the axon initial segment (AIS) and propagate bidirectionally: orthodromically along the distal axon and retrogradely into the soma and dendrites. Under some circumstances, action potentials may initiate ectopically, at sites distal to the AIS, and propagate antidromically along the axon. These "ectopic action potentials" (EAPs) have been observed in experimental models of seizures and chronic pain, and more rarely in nonpathological forebrain neurons. Here we report that a large majority of parvalbumin-expressing (PV+) interneurons in the upper layers of mouse neocortex, from both orbitofrontal and primary somatosensory areas, fire EAPs after sufficient activation of their somata. Somatostatin-expressing interneurons also fire EAPs, though less robustly. Ectopic firing in PV+ cells occurs in varying temporal patterns and can persist for several seconds. PV+ cells evoke strong synaptic inhibition in pyramidal neurons and interneurons and play critical roles in cortical function. Our results suggest that ectopic spiking of PV+ interneurons is common and may contribute to both normal and pathological network functions of the neocortex.


Assuntos
Potenciais de Ação , Interneurônios , Camundongos Transgênicos , Neocórtex , Parvalbuminas , Animais , Parvalbuminas/metabolismo , Interneurônios/fisiologia , Interneurônios/metabolismo , Neocórtex/fisiologia , Potenciais de Ação/fisiologia , Masculino , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia , Somatostatina/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(16): e2311040121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593083

RESUMO

Cortical dynamics and computations are strongly influenced by diverse GABAergic interneurons, including those expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP). Together with excitatory (E) neurons, they form a canonical microcircuit and exhibit counterintuitive nonlinear phenomena. One instance of such phenomena is response reversal, whereby SST neurons show opposite responses to top-down modulation via VIP depending on the presence of bottom-up sensory input, indicating that the network may function in different regimes under different stimulation conditions. Combining analytical and computational approaches, we demonstrate that model networks with multiple interneuron subtypes and experimentally identified short-term plasticity mechanisms can implement response reversal. Surprisingly, despite not directly affecting SST and VIP activity, PV-to-E short-term depression has a decisive impact on SST response reversal. We show how response reversal relates to inhibition stabilization and the paradoxical effect in the presence of several short-term plasticity mechanisms demonstrating that response reversal coincides with a change in the indispensability of SST for network stabilization. In summary, our work suggests a role of short-term plasticity mechanisms in generating nonlinear phenomena in networks with multiple interneuron subtypes and makes several experimentally testable predictions.


Assuntos
Interneurônios , Neurônios , Interneurônios/fisiologia , Parvalbuminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA