RESUMO
Laser thermal ablation has become a prominent neurosurgical treatment approach, but in epilepsy patients it cannot currently be safely implemented with intracranial recording electrodes that are used to study interictal or epileptiform activity. There is a pressing need for computational models of laser interstitial thermal therapy (LITT) with and without intracranial electrodes to enhance the efficacy and safety of optical neurotherapies. In this paper, we aimed to build a biophysical bioheat and ray optics model to study the effects of laser heating in the brain, with and without intracranial electrodes in the vicinity of the ablation zone during the LITT procedure. COMSOL Multiphysics finite element method (FEM) solver software was used to create a bioheat thermal model of brain tissue, with and without blood flow incorporation via Penne's model, to model neural tissue response to laser heating. We report that the close placement of intracranial electrodes can increase the maximum temperature of the brain tissue volume as well as impact the necrosis region volume if the electrodes are placed too closely to the laser coupled diffuse fiber tip. The model shows that an electrode displacement of 4 mm could be considered a safe distance of intracranial electrode placement away from the LITT probe treatment area. This work, for the first time, models the impact of intracranially implanted recording electrodes during LITT, which could improve the understanding of the LITT treatment procedure on the brain's neural networks a sufficient safe distance to the implanted intracranial recording electrodes. We recommend modeling safe distances for placing the electrodes with respect to the infrared laser coupled diffuse fiber tip.
RESUMO
Achieving seizure freedom following failure of several antiseizure medications (ASMs) is rare, with the likelihood of achieving further control decreasing with each successive ASM trial. When cases of drug-resistant epilepsy arise, a diagnostic procedure known as stereoelectroencephalography (sEEG) can be used to identify epileptogenic zones (EZ) within the brain. After localization of these zones, they can be targeted for future surgical intervention. Here, we describe a case of complete seizure freedom off medication after sEEG without resection or other therapeutic intervention. In 2017, a 36-year-old right-handed male presented with drug-resistant epilepsy stemming from prior traumatic brain injury. Due to ongoing seizures, in 2020 a robotic-assisted sEEG electrode placement procedure was employed to localize the seizure onset zone. During sEEG monitoring, a single event was captured where the patient had dysarthric speech, left arm dystonic flexion, and difficulty responding to questioning. Notably, this event had no sEEG correlate, suggesting seizure occurrence in a region not monitored by implanted electrodes, which prompted the placement of scalp electrodes following this event. However, no further clinical events consistent with seizure were provoked through the remainder of recording. Following the 13-day admission, the patient chose to self-discontinue all seizure medications and has remained seizure free as of October 2023, more than 3.5 years later. While sEEG is considered a relatively safe procedure for seizure localization in drug resistant epilepsy, the possibility of microlesions created by sEEG depth electrodes remains largely unexplored. Further evaluation should be performed into potential tissue injury produced by depth electrode insertion.
RESUMO
A trapezoid-shaped electrode (TSE) is used for detecting epileptogenicity in patients with temporal lobe epilepsy (TLE). However, the utility and safety associated with TSE placement have not been reported. In this study, we evaluated the safety and usefulness of TSE by analyzing the seizure detection, surgical outcomes and complications in patients with TLE who underwent intracranial electrodes (ICE) placement. Between April 2000 and August 2019, 50 patients with TLE who underwent 51 ICE placement procedures were examined. A TSE with eight contacts covering the parahippocampal gyrus and basal temporal lobe was used. Among the 37 patients who underwent TSE placement, 26 and 11 patients were diagnosed with mesial TLE (mTLE) and extra-mTLE, respectively. The 14 remaining patients without TSE placement were diagnosed with extra-mTLE. Seizure freedom was achieved in 73% (19/26) of mTLE patients detected by TSE and 50% (14/24) of extra-mTLE patients.Good seizure outcomes (Engel class I and II) were observed in 81% (21/26) patients with mTLE and 67% (16/24) patients with extra-mTLE. Radiographic complications were observed in 20% (10/50) patients who underwent ICE placement. Although 6% (3/50) patients showed transient neurological deficits, none were permanent. The electrodes responsible for the occurrence of complications included nine grid electrodes and one TSE. The complication rate after TSE placement was 3% (1/37). More than 64 electrode contacts and male sex, not TSE placement, were identified as significant risk factors for developing complications. This study demonstrated the usefulness and safety of TSE for evaluating mTLE in patients undergoing ICE placement.
Assuntos
Epilepsia do Lobo Temporal , Lobo Temporal , Humanos , Masculino , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/complicações , Convulsões/complicações , Procedimentos Neurocirúrgicos/métodos , Eletrodos , Resultado do TratamentoRESUMO
OBJECTIVE: Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug-resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of "electrode reconstruction," which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. METHODS: We created iEEG-recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG-recon in a containerized format that allows integration into clinical workflows. We propose a cloud-based implementation of iEEG-recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. RESULTS: We used iEEG-recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30-min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG-recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre- and postimplant T1-MRI visual inspections. We also found that our use of ANTsPyNet deep learning-based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. SIGNIFICANCE: iEEG-recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG-recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.
Assuntos
Eletrocorticografia , Epilepsia , Humanos , Eletrocorticografia/métodos , Estudos Retrospectivos , Estudos Prospectivos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Imageamento por Ressonância Magnética/métodos , Eletrodos , Eletroencefalografia/métodos , Eletrodos ImplantadosRESUMO
OBJECTIVE: Anteromesial resection is an effective method for treating seizures arising from the medial temporal lobe, as these cases are often the most straightforward and have the best outcomes. Nevertheless, some patients who go on to have a mesial resection are recommended to have an implantation of electrodes before surgery. Whether the need for such an implant alters the rate of seizure freedom is not well-studied in this particular subgroup of epilepsy patients. METHODS: We performed a retrospective review of consecutive anteromesial surgeries for medial temporal lobe epilepsy performed between 2005 and 2020. Of a total of 39 patients, 19 required electrode implantation (electrode group) and 20 did not (no-electrode group). The primary outcomes assessed were reduction in seizure frequency and Engel score. Complication rates were also compared. RESULTS: Postresection seizure frequency reduction was nonsignificantly higher in the no-electrode group (97.0 ± 10.3%) than in the electrode group (88.5 ± 23.7%, P = 0.15). The rate of Engel I outcome was nonsignificantly higher in the no-electrode group (84.2%) than in the electrode group (65.0%, P = 0.17). Major complication rates were nonsignificantly higher in the no-electrode group (15.8 ± 1.9%) than in the electrode group (5.0 ± 1.1%, P = 0.26). Power analysis revealed that 74 patients would need to be included in each group to reach statistical significance. CONCLUSIONS: Although not statistically significant, our study showed a trend for improved seizure control if a decision was made not to implant electrodes prior to potentially curative anteromesial resection. Engel I outcome in this group reached approximately 85%. A larger multi-instiutional study may be required to reach statistical significance.
Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/cirurgia , Lobo Temporal/cirurgia , Convulsões/cirurgia , Eletrodos , Procedimentos Neurocirúrgicos/métodos , Estudos Retrospectivos , Resultado do TratamentoRESUMO
Introduction: Intracranial electrodes are implanted in patients with drug-resistant epilepsy as part of their pre-surgical evaluation. This allows the investigation of normal and pathological brain functions with excellent spatial and temporal resolution. The spatial resolution relies on methods that precisely localize the implanted electrodes in the cerebral cortex, which is critical for drawing valid inferences about the anatomical localization of brain function. Multiple methods have been developed to localize the electrodes, mainly relying on pre-implantation MRI and post-implantation computer tomography (CT) images. However, they are hard to validate because there is no ground truth data to test them and there is no standard approach to systematically quantify their performance. In other words, their validation lacks standardization. Our work aimed to model intracranial electrode arrays and simulate realistic implantation scenarios, thereby providing localization algorithms with new ways to evaluate and optimize their performance. Results: We implemented novel methods to model the coordinates of implanted grids, strips, and depth electrodes, as well as the CT artifacts produced by these. We successfully modeled realistic implantation scenarios, including different sizes, inter-electrode distances, and brain areas. In total, â¼3,300 grids and strips were fitted over the brain surface, and â¼850 depth electrode arrays penetrating the cortical tissue were modeled. Realistic CT artifacts were simulated at the electrode locations under 12 different noise levels. Altogether, â¼50,000 thresholded CT artifact arrays were simulated in these scenarios, and validated with real data from 17 patients regarding the coordinates' spatial deformation, and the CT artifacts' shape, intensity distribution, and noise level. Finally, we provide an example of how the simulation platform is used to characterize the performance of two cluster-based localization methods. Conclusion: We successfully developed the first platform to model implanted intracranial grids, strips, and depth electrodes and realistically simulate thresholded CT artifacts and their noise. These methods provide a basis for developing more complex models, while simulations allow systematic evaluation of the performance of electrode localization techniques. The methods described in this article, and the results obtained from the simulations, are freely available via open repositories. A graphical user interface implementation is also accessible via the open-source iElectrodes toolbox.
RESUMO
Objective.Semantic concepts are coherent entities within our minds. They underpin our thought processes and are a part of the basis for our understanding of the world. Modern neuroscience research is increasingly exploring how individual semantic concepts are encoded within our brains and a number of studies are beginning to reveal key patterns of neural activity that underpin specific concepts. Building upon this basic understanding of the process of semantic neural encoding, neural engineers are beginning to explore tools and methods for semantic decoding: identifying which semantic concepts an individual is focused on at a given moment in time from recordings of their neural activity. In this paper we review the current literature on semantic neural decoding.Approach.We conducted this review according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. Specifically, we assess the eligibility of published peer-reviewed reports via a search of PubMed and Google Scholar. We identify a total of 74 studies in which semantic neural decoding is used to attempt to identify individual semantic concepts from neural activity.Main results.Our review reveals how modern neuroscientific tools have been developed to allow decoding of individual concepts from a range of neuroimaging modalities. We discuss specific neuroimaging methods, experimental designs, and machine learning pipelines that are employed to aid the decoding of semantic concepts. We quantify the efficacy of semantic decoders by measuring information transfer rates. We also discuss current challenges presented by this research area and present some possible solutions. Finally, we discuss some possible emerging and speculative future directions for this research area.Significance.Semantic decoding is a rapidly growing area of research. However, despite its increasingly widespread popularity and use in neuroscientific research this is the first literature review focusing on this topic across neuroimaging modalities and with a focus on quantifying the efficacy of semantic decoders.
Assuntos
Encéfalo , Semântica , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , NeuroimagemRESUMO
The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localizing epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal abnormalities become more salient by quantitatively accounting for the range of healthy brain dynamics in a location-specific manner. To this end, we constructed a normative map of brain dynamics, in terms of relative band power, from interictal intracranial recordings from 234 participants (21â598 electrode contacts). We then compared interictal recordings from 62 patients with epilepsy to the normative map to identify abnormal regions. We proposed that if the most abnormal regions were spared by surgery, then patients would be more likely to experience continued seizures postoperatively. We first confirmed that the spatial variations of band power in the normative map across brain regions were consistent with healthy variations reported in the literature. Second, when accounting for the normative variations, regions that were spared by surgery were more abnormal than those resected only in patients with persistent postoperative seizures (t = -3.6, P = 0.0003), confirming our hypothesis. Third, we found that this effect discriminated patient outcomes (area under curve 0.75 P = 0.0003). Normative mapping is a well-established practice in neuroscientific research. Our study suggests that this approach is feasible to detect interictal abnormalities in intracranial EEG, and of potential clinical value to identify pathological tissue in epilepsy. Finally, we make our normative intracranial map publicly available to facilitate future investigations in epilepsy and beyond.
Assuntos
Eletrocorticografia , Epilepsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Epilepsia/cirurgia , Humanos , Convulsões/patologia , Convulsões/cirurgiaRESUMO
OBJECTIVE: Cerebral spatiotemporal dynamics of visual naming were investigated in epilepsy patients undergoing stereo-electroencephalography (SEEG) monitoring. METHODS: Brain networks were defined by Parcel-Activation-Resection-Symptom matching (PARS) approach by matching high-gamma (50-150 Hz) modulations (HGM) in neuroanatomic parcels during visual naming, with neuropsychological outcomes after resection/ablation of those parcels. Brain parcels with >50% electrode contacts simultaneously showing significant HGM were aligned, to delineate spatiotemporal course of naming-related HGM. RESULTS: In 41 epilepsy patients, neuroanatomic parcels showed sequential yet temporally overlapping HGM course during visual naming. From bilateral occipital lobes, HGM became increasingly left lateralized, coursing through limbic system. Bilateral superior temporal HGM was noted around response time, and right frontal HGM thereafter. Correlations between resected/ablated parcels, and post-surgical neuropsychological outcomes showed specific regional groupings. CONCLUSIONS: Convergence of data from spatiotemporal course of HGM during visual naming, and functional role of specific parcels inferred from neuropsychological deficits after resection/ablation of those parcels, support a model with six cognitive subcomponents of visual naming having overlapping temporal profiles. SIGNIFICANCE: Cerebral substrates supporting visual naming are bilaterally distributed with relative hemispheric contribution dependent on cognitive demands at a specific time. PARS approach can be extended to study other cognitive and functional brain networks.
Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Visuais/fisiologia , Adolescente , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Vias Visuais/diagnóstico por imagem , Adulto JovemRESUMO
BACKGROUND: This research study is an economic analysis of a neurotechnology-based translational research and development venture focused on the development of a therapy for patients with epilepsy. In the conceptualization, planning, financing, and execution of neurotechnology ventures, many factors come into play in determining value and ability to secure financing at each stage of the venture. Conventionally, these have included factors that determine the return on investment for the stakeholders of the venture, most notably the investors and the team members, the former investing hard earned capital, and the latter investing significant portions of their professional careers. For a variety of reasons, the positive impact on society is often not quantified and taken into consideration. METHODS: To address this, a new term is defined and assessed at a first approximation level using an index technology. The metric is termed the societal return on investment (sROI). RESULTS: Among chronic conditions, neurological disease is virtually unique in the magnitude of economic devastation that it can inflict on a person and a family. Because the device costs do not reflect this value that is lost and subject to restoration, these are missing from this important calculation. The index project is the development of a seizure advisory system, which cost $71.2 million to develop and conduct a First-In-Man (FIM) study (NCT01043406) and which was estimated to require $50 million to complete a pivotal study. CONCLUSION: Despite the immense costs required to develop, test, and commercialize such a system, the direct and indirect economic costs imposed by uncontrolled seizures are sufficiently staggering that a sROI becomes positive after only 400 patients have been successfully treated and returned to work.
RESUMO
Objective: Stereoelectroencephalography (SEEG) has seen a recent increase in popularity in North America; however, concerns regarding the spatial sampling capabilities of SEEG remain. We aimed to quantify and compare the spatial sampling of subdural electrode (SDE) and SEEG implants. Methods: Patients with drug-resistant epilepsy who underwent invasive monitoring were included in this retrospective case-control study. Ten SEEG cases were compared with ten matched SDE cases based on clinical presentation and pre-implantation hypothesis. To quantify gray matter sampling, MR and CT images were coregistered and a 2.5mm radius sphere was superimposed over the center of each electrode contact. The estimated recording volume of gray matter was defined as the cortical voxels within these spherical models. Paired t-tests were performed to compare volumes and locations of SDE and SEEG recording. A Ripley's K-function analysis was performed to quantify differences in spatial distributions. Results: The average recording volume of gray matter by each individual contact was similar between the two modalities. SEEG implants sampled an average of 20% more total gray matter, consisted of an average of 17% more electrode contacts, and had 77% more of their contacts covering gray matter within sulci. Insular coverage was only achieved with SEEG. SEEG implants generally consist of discrete areas of dense local coverage scattered across the brain; while SDE implants cover relatively contiguous areas with lower density recording. Significance: Average recording volumes per electrode contact are similar for SEEG and SDE, but SEEG may allow for greater overall volumes of recording as more electrodes can be routinely implanted. The primary difference lies in the location and distribution of gray matter than can be sampled. The selection between SEEG and SDE implantation depends on sampling needs of the invasive implant.
RESUMO
Intracranial EEG is the current gold standard technique for localizing seizures for surgery, but it can be insensitive to tangential dipole or distant sources. Electrical Impedance Tomography (EIT) offers a novel method to improve coverage and seizure onset localization. The feasibility of EIT has been previously assessed in a computer simulation, which revealed an improved accuracy of seizure detection with EIT compared to intracranial EEG. In this study, slow impedance changes, evoked by cell swelling occurring over seconds, were reconstructed in real time by frequency division multiplexing EIT using depth and subdural electrodes in a swine model of epilepsy. EIT allowed to generate repetitive images of ictal events at similar time course to fMRI but without its significant limitations. EIT was recorded with a system consisting of 32 parallel current sources and 64 voltage recorders. Seizures triggered with intracranial injection of benzylpenicillin (BPN) in five pigs caused a repetitive peak impedance increase of 3.4 ± 1.5 mV and 9.5 ± 3% (N =205 seizures); the impedance signal change was seen already after a single, first seizure. EIT enabled reconstruction of the seizure onset 9 ± 1.5 mm from the BPN cannula and 7.5 ± 1.1 mm from the closest SEEG contact (p<0.05, n =37 focal seizures in three pigs) and it could address problems with sampling error in intracranial EEG. The amplitude of the impedance change correlated with the spread of the seizure on the SEEG (p <<0.001, n =37). The results presented here suggest that combining a parallel EIT system with intracranial EEG monitoring has a potential to improve the diagnostic yield in epileptic patients and become a vital tool in improving our understanding of epilepsy.
Assuntos
Impedância Elétrica , Eletrocorticografia/métodos , Eletrodos Implantados , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Técnicas Estereotáxicas , Animais , Eletrocorticografia/instrumentação , Feminino , Técnicas Estereotáxicas/instrumentação , SuínosRESUMO
PURPOSE: Intracranial electroencephalography (EEG) can be a critical part of presurgical evaluation for drug resistant epilepsy. With the increasing use of intracranial EEG, the safety of these electrodes in the magnetic resonance imaging (MRI) environment remains a concern, particularly at higher field strengths. However, no studies have reported the MRI safety experience of intracranial electrodes at 3 T. We report an MRI safety review of patients with intracranial electrodes at 1.5 and 3 T. METHODS: One hundred and sixty-five consecutive admissions for intracranial EEG monitoring were reviewed. A total of 184 MRI scans were performed on 135 patients over 140 admissions. These included 118 structural MRI studies at 1.5 T and 66 functional MRI studies at 3 T. The magnetic resonance (MR) protocols avoided the use of high specific energy absorption rate sequences that could result in electrode heating. The intracranial implantations included 114 depth, 15 subdural, and 11 combined subdural and depth electrodes. Medical records were reviewed for patient-reported complications and radiologic complications related to these studies. Pre-implantation, post-implantation, and post-explantation imaging studies were reviewed for potential complications. RESULTS: No adverse events or complications were seen during or after MRI scanning at 1.5 or 3 T apart from those attributed to electrode implantation. There was also no clinical or imaging evidence of worsening of pre-existing implantation-related complications after MR imaging. CONCLUSION: No clinical or radiographic complications are seen when performing MRI scans at 1.5 or 3 T on patients with implanted intracranial EEG electrodes while avoiding high specific energy absorption rate sequences.
Assuntos
Epilepsia Resistente a Medicamentos , Eletrocorticografia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Eletrodos Implantados , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética/efeitos adversosRESUMO
OBJECTIVE: A novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping. METHODS: SEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50-150 Hz power modulations in time-frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated. RESULTS: In 21 patients (9 females), aged 4.8-21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites. CONCLUSIONS: SEEG HGM mapping can accurately localize neuroanatomic and ESM language sites. SIGNIFICANCE: Predictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.
Assuntos
Mapeamento Encefálico/normas , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/normas , Idioma , Técnicas Estereotáxicas/normas , Adolescente , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Eletroencefalografia/métodos , Feminino , Ritmo Gama/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto JovemRESUMO
OBJECTIVE: We evaluated stereo-EEG electrical stimulation mapping (ESM) for localization of anatomic sensorimotor parcels in pediatric patients with drug-resistant epilepsy. We also analyzed sensorimotor and after-discharge thresholds, and the somatotopy of sensorimotor responses. METHODS: ESM was performed with 50 Hz, biphasic, 2-3 s trains, using 1-9 mA current. Pre- and post-implant neuroimaging was co-registered and intersected with Neurosynth reference, to classify each electrode contact as lying within/outside an anatomic sensorimotor parcel. Indices of diagnostic performance were computed. Sensorimotor and after-discharge thresholds were analyzed using multivariable linear mixed models. RESULTS: In 15 patients (6 females), aged 5.5-21.2 years, ESM showed high accuracy (0.80), high specificity (0.86), and diagnostic odds ratio (11.4, p < 0.0001) for localization of sensorimotor parcels. Mean sensorimotor threshold (3.4 mA) was below mean after-discharge threshold (4.2 mA, p = 0.0004). Sensorimotor and after-discharge thresholds showed a significant decrease with increasing intelligence quotient. Somatotopy of sensorimotor responses was mapped to standardized brain parcels. CONCLUSIONS: We provide evidence for diagnostic validity and safety of stereo-EEG sensorimotor ESM. SIGNIFICANCE: The somatotopy of sensorimotor responses elicited with electrical stimulation provide new insights into mechanisms of motor control and sensory perception.
Assuntos
Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos , Córtex Sensório-Motor/fisiopatologia , Adolescente , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Estimulação Elétrica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Sensibilidade e Especificidade , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/cirurgia , Adulto JovemRESUMO
OBJECTIVE: Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross-subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static. METHODS: In this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue. RESULTS: We show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed. SIGNIFICANCE: Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy.
Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Eletrodos Implantados , Eletroencefalografia/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Tempo , Resultado do TratamentoRESUMO
Electrocorticographic brain computer interfaces (ECoG-BCIs) offer tremendous opportunities for restoring function in individuals suffering from neurological damage and for advancing basic neuroscience knowledge. ECoG electrodes are already commonly used clinically for monitoring epilepsy and have greater spatial specificity in recording neuronal activity than techniques such as electroencephalography (EEG). Much work to date in the field has focused on using ECoG signals recorded from cortex as control outputs for driving end effectors. An equally important but less explored application of an ECoG-BCI is directing input into cortex using ECoG electrodes for direct electrical stimulation (DES). Combining DES with ECoG recording enables a truly bidirectional BCI, where information is both read from and written to the brain. We discuss the advantages and opportunities, as well as the barriers and challenges presented by using DES in an ECoG-BCI. In this article, we review ECoG electrodes, the physics and physiology of DES, and the use of electrical stimulation of the brain for the clinical treatment of disorders such as epilepsy and Parkinson's disease. We briefly discuss some of the translational, regulatory, financial, and ethical concerns regarding ECoG-BCIs. Next, we describe the use of ECoG-based DES for providing sensory feedback and for probing and modifying cortical connectivity. We explore future directions, which may draw on invasive animal studies with penetrating and surface electrodes as well as non-invasive stimulation methods such as transcranial magnetic stimulation (TMS). We conclude by describing enabling technologies, such as smaller ECoG electrodes for more precise targeting of cortical areas, signal processing strategies for simultaneous stimulation and recording, and computational modeling and algorithms for tailoring stimulation to each individual brain.
RESUMO
This research study is part of a therapy development effort in which a novel approach was taken to develop an implantable electroencephalographic (EEG) based brain monitoring and seizure prediction system. Previous attempts to predict seizures by other groups had not been demonstrated to be statistically more successful than chance. The primary clinical findings from this group were published in a clinical paper; however much of the fundamental technology, including the strategy and techniques behind the development of the seizure advisory system have not been published. Development of this technology comprised several steps: a vast high quality database of EEG recordings was assembled, a structured approach to algorithm development was undertaken, an implantable 16-channel subdural neural monitoring and seizure advisory system was designed and built, preclinical studies were conducted in a canine model, and a First-In-Man study involving implantation of 15 patients followed for two years was conducted to evaluate the algorithm. The algorithm was successfully trained to correctly provide a) notification of a high likelihood of seizure in 11 of 14 patients, and b) notification of a low likelihood of seizure in 5 of 14 patients (NCT01043406). Continuous neural state monitoring shows promise for applications in seizure prediction and likelihood estimation, and insights for further research and development are drawn.
RESUMO
PURPOSE: Resective epilepsy surgery based on an invasive EEG-monitors performed with subdural grids (SDG) or depth electrodes (stereo-electroencephalography, SEEG) is considered to be the best option towards achieving seizure-free state in drug-resistant epilepsy. The authors present a meta-analysis, due to the lack of such a study focusing on surgical outcomes originating from SDG- or SEEG-monitors. METHOD: English-language studies published until May 2018, highlighting surgical outcomes were reviewed. Outcome measures including total number of SDG- or SEEG-monitors and resective surgeries; consecutively followed surgical cases; surgical outcomes classified by Engel in overall, temporal/extratemporal and lesional/nonlesional subgroups were analyzed. RESULTS: 19 articles containing 1025 SDG-interventions and 16 publications comprising 974 SEEG-monitors were researched. The rate of resective surgery deriving from SDG-monitoring hovered at 88.8% (95%CI:83.3-92.6%) (I2â¯=â¯77.0%;pâ¯<â¯0.001); in SEEG-group, 79.0% (95%CI:70.4-85.7%) (I2â¯=â¯72.5%;pâ¯<â¯0.001) was measured. After SDG-interventions, percentage of post-resective follow-up escalated to 96.0% (95%CI:92.0-98.1%) (I2â¯=â¯49.1%;pâ¯=â¯0.010), and in SEEG-group, it reached 94.9% (95%CI:89.3-97.6%) (I2â¯=â¯80.2%;pâ¯<â¯0.001). In SDG-group, ratio of seizure-free outcomes reached 55.9% (95%CI:50.9-60.8%) (I2â¯=â¯54.47%;pâ¯=â¯0.002). Using SEEG-monitor, seizure-freedom occurred in 64.7% (95%CI:59.2-69.8%) (I2â¯=â¯11.9%;pâ¯=â¯0.32). Assessing lesional cases, likelihood of Engel I outcome was found in 57.3% (95%CI:48.7%-65.6%) (I2â¯=â¯69.9%;pâ¯<â¯0.001), using SDG; while in SEEG-group, it was 71.6% (95%CI:61.6%-79.9%) (I2â¯=â¯24.5%;pâ¯=â¯0.225). In temporal subgroup, ratio of seizure-freedom was found to be 56.7% (95%CI:51.5%-61.9%) (I2â¯=â¯3.2%;pâ¯=â¯0.412) in SDG-group; whereas, SEEG-group reached 73.9% (95%CI:64.4%-81.6%); (I2â¯=â¯0.00%;pâ¯=â¯0.45). Significant differences between seizure-free outcomes were found in overall (pâ¯=â¯0.02), lesional (pâ¯=â¯0.031), and also, temporal (pâ¯=â¯0.002) comparisons. CONCLUSIONS: SEEG-interventions were associated, at least, non-inferiorly, with seizure-freedom compared with SDG-monitors in temporal, lesional and overall subgroups.
Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Eletrodos Implantados , Monitorização Neurofisiológica , Procedimentos Neurocirúrgicos , Epilepsia Resistente a Medicamentos/diagnóstico , Eletrocorticografia/instrumentação , Humanos , Monitorização Neurofisiológica/instrumentação , Convulsões/diagnóstico , Convulsões/cirurgia , Resultado do TratamentoRESUMO
OBJECTIVE: To assess the ability of functional MRI (fMRI) to predict postoperative language decline compared to direct cortical stimulation (DCS) in epilepsy surgery patients. METHODS: In this prospective case series, 17 patients with drug-resistant epilepsy had intracranial monitoring and resection from 2012 to 2016 with 1-year follow-up. All patients completed preoperative language fMRI, mapping with DCS of subdural electrodes, pre- and postoperative neuropsychological testing for language function, and resection. Changes in language function before and after surgery were assessed. fMRI activation and DCS electrodes in the resection were evaluated as potential predictors of language decline. RESULTS: Four of 17 patients (12 female; median [range] age, 43 [23-59] years) experienced postoperative language decline 1 year after surgery. Two of 4 patients had overlap of fMRI activation, language-positive electrodes in basal temporal regions (within 1 cm), and resection. Two had overlap between resection volume and fMRI activation, but not DCS. fMRI demonstrated 100% sensitivity and 46% specificity for outcome compared to DCS (50% and 85%, respectively). When fMRI and DCS language findings were concordant, the combined tests showed 100% sensitivity and 75% specificity for language outcome. Seizure-onset age, resection side, type, volume, or 1 year seizure outcome did not predict language decline. SIGNIFICANCE: Language localization overlap of fMRI and direct cortical stimulation in the resection influences postoperative language performance. Our preliminary study suggests that fMRI may be more sensitive and less specific than direct cortical stimulation. Together they may predict outcome better than either test alone.