Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
1.
Methods Mol Biol ; 2861: 187-193, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39395106

RESUMO

Intracellular calcium is an important regulator of solute transport in renal epithelial cells, and disordered calcium signaling may underlie the pathogenesis of certain kidney diseases. Intravital multiphoton imaging of the kidney in transgenic mice expressing highly sensitive fluorescent reporters allows detailed study of calcium signals within different specialized segments of the renal tubule and how these are integrated with other cellular processes. Moreover, changes in activity can be observed in real time in response to physiological interventions or disease-causing insults. In this chapter, we will provide a detailed protocol for performing this powerful research technique.


Assuntos
Cálcio , Microscopia Intravital , Rim , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Camundongos , Cálcio/metabolismo , Microscopia Intravital/métodos , Microscopia Intravital/instrumentação , Rim/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Sinalização do Cálcio
2.
Adv Sci (Weinh) ; : e2404661, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364760

RESUMO

Exposure to nanoparticles (NPs) is frequently associated with adverse cardiovascular effects. In contrast, NPs in nanomedicine hold great promise for precise lung-specific drug delivery, especially considering the extensive pulmonary capillary network that facilitates interactions with bloodstream-suspended particles. Therefore, exact knowledge about effects of engineered NPs within the pulmonary microcirculation are instrumental for future application of this technology in patients. To unravel the real-time dynamics of intravenously delivered NPs and their effects in the pulmonary microvasculature, we employed intravital microscopy of the mouse lung. Only PEG-amine-QDs, but not carboxyl-QDs triggered rapid neutrophil recruitment in microvessels and their subsequent recruitment to the alveolar space and was linked to cellular degranulation, TNF-α, and DAMP release into the circulation, particularly eATP. Stimulation of the ATP-gated receptor P2X7R induced expression of E-selectin on microvascular endothelium thereby mediating the neutrophilic immune response. Leukocyte integrins LFA-1 and MAC-1 facilitated adhesion and decelerated neutrophil crawling on the vascular surface. In summary, this study unravels the complex cascade of neutrophil recruitment during NP-induced sterile inflammation. Thereby we demonstrate novel adverse effects for NPs in the pulmonary microcirculation and provide critical insights for optimizing NP-based drug delivery and therapeutic intervention strategies, to ensure their efficacy and safety in clinical applications.

3.
Cell ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39378878

RESUMO

Breast disseminated cancer cells (DCCs) can remain dormant in the lungs for extended periods, but the mechanisms limiting their expansion are not well understood. Research indicates that tissue-resident alveolar macrophages suppress breast cancer metastasis in lung alveoli by inducing dormancy. Through ligand-receptor mapping and intravital imaging, it was found that alveolar macrophages express transforming growth factor (TGF)-ß2. This expression, along with persistent macrophage-cancer cell interactions via the TGF-ßRIII receptor, maintains cancer cells in a dormant state. Depleting alveolar macrophages or losing the TGF-ß2 receptor in cancer cells triggers metastatic awakening. Aggressive breast cancer cells are either suppressed by alveolar macrophages or evade this suppression by avoiding interaction and downregulating the TGF-ß2 receptor. Restoring TGF-ßRIII in aggressive cells reinstates TGF-ß2-mediated macrophage growth suppression. Thus, alveolar macrophages act as a metastasis immune barrier, and downregulation of TGF-ß2 signaling allows cancer cells to overcome macrophage-mediated growth suppression.

4.
Immunity ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39368486

RESUMO

To improve immunotherapy for brain tumors, it is important to determine the principal intracranial site of T cell recruitment from the bloodstream and their intracranial route to brain tumors. Using intravital microscopy in mouse models of intracranial melanoma, we discovered that circulating T cells preferably adhered and extravasated at a distinct type of venous blood vessel in the tumor vicinity, peritumoral venous vessels (PVVs). Other vascular structures were excluded as alternative T cell routes to intracranial melanomas. Anti-PD-1/CTLA-4 immune checkpoint inhibitors increased intracranial T cell motility, facilitating migration from PVVs to the tumor and subsequently inhibiting intracranial tumor growth. The endothelial adhesion molecule ICAM-1 was particularly expressed on PVVs, and, in samples of human brain metastases, ICAM-1 positivity of PVV-like vessels correlated with intratumoral T cell infiltration. These findings uncover a distinct mechanism by which the immune system can access and control brain tumors and potentially influence other brain pathologies.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39387121

RESUMO

BACKGROUND: Chronic mental stress accelerates atherosclerosis through complicated neuroimmune pathways, needing for advanced imaging techniques to delineate underlying cellular mechanisms. While histopathology, ex vivo imaging, and snapshots of in vivo images offer promising evidence, they lack the ability to capture real-time visualization of blood cell dynamics within pulsatile arteries in longitudinal studies. METHODS: An electrically tunable lens was implemented in intravital optical microscopy, synchronizing the focal plane with heartbeats to follow artery movements. ApoE-/- mice underwent 2 weeks of restraint stress before baseline imaging followed by 2 weeks of stress exposure in the longitudinal imaging, while nonstressed mice remained undisturbed. The progression of vascular inflammation was assessed in the carotid arteries through intravital imaging and histological analyses. RESULTS: A 4-fold reduction of motion artifact, assessed by interframe SD, and an effective temporal resolution of 25.2 Hz were achieved in beating murine carotid arteries. Longitudinal intravital imaging showed chronic stress led to a 6.09-fold (P=0.017) increase in myeloid cell infiltration compared with nonstressed mice. After 3 weeks, we observed that chronic stress intensified vascular inflammation, increasing adhered myeloid cells by 2.45-fold (P=0.031), while no significant changes were noted in nonstressed mice. Microcirculation imaging revealed increased circulating, rolling, and adhered cells in stressed mice's venules. Histological analysis of the carotid arteries confirmed the in vivo findings that stress augmented plaque area, myeloid cell and macrophage accumulation, and necrotic core volume while reducing fibrous cap thickness indicating accelerated plaque formation. We visualized the 3-dimensional structure of the carotid artery and 4-dimensional dynamics of the venules in the cremaster muscle. CONCLUSIONS: Dynamic focusing motion compensation intravital microscopy enabled subcellular resolution in vivo imaging of blood cell dynamics in beating arteries under chronic restraint stress in real time. This novel technique emphasizes the importance of advanced in vivo imaging for understanding cardiovascular disease.

6.
bioRxiv ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39345499

RESUMO

Intravital microscopy has enabled the study of immune dynamics in the pulmonary microvasculature, but many key events remain unseen because they occur in deeper lung regions. We therefore developed a technique for stabilized intravital imaging of bronchovascular cuffs and collecting lymphatics surrounding pulmonary veins in mice. Intravital imaging of pulmonary lymphatics revealed ventilation-dependence of steady-state lung lymph flow and ventilation-independent lymph flow during inflammation. We imaged the rapid exodus of migratory dendritic cells through lung lymphatics following inflammation and measured effects of pharmacologic and genetic interventions targeting chemokine signaling. Intravital imaging also captured lymphatic immune surveillance of lung-metastatic cancers and lymphatic metastasis of cancer cells. To our knowledge, this is the first imaging of lymph flow and leukocyte migration through intact pulmonary lymphatics. This approach will enable studies of protective and maladaptive processes unfolding within the lungs and in other previously inaccessible locations.

7.
Eur Heart J Imaging Methods Pract ; 2(1): qyae062, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39224098

RESUMO

Aims: To develop and validate an optimized intravital heart microimaging protocol using a suction-based tissue motion-stabilizing cardiac imaging window to facilitate real-time observation of dynamic cellular behaviours within cardiac tissue in live mouse models. Methods and results: Intravital heart imaging was conducted using dual-mode confocal and two-photon microscopy. Mice were anesthetized, intubated, and maintained at a stable body temperature during the procedure. LysM-eGFP transgenic mice were utilized to visualize immune cell dynamics with vascular labelling by intravenous injection of anti-CD31 antibody and DiD-labelled red blood cells (RBCs). A heart imaging window chamber with a vacuum-based tissue motion stabilizer with 890-920 mbar was applied following a chest incision to expose the cardiac tissue. The suction-based heart imaging window chamber system and artificial intelligence-based motion compensation function significantly reduced motion artefacts and facilitated real-time in vivo cell analysis of immune cell and RBC trafficking, revealing a mean neutrophil movement velocity of 1.66 mm/s, which was slower compared to the RBC flow velocity of 9.22 mm/s. Intravital two-photon microscopic heart imaging enabled label-free second harmonic generation imaging of cardiac muscle structures with 820-840 nm excitation wavelength, revealing detailed biodistributions and structural variations in sarcomeres and fibrillar organization in the heart. Conclusion: The optimized intravital heart imaging protocol successfully demonstrates its capability to provide high-resolution, real-time visualization of dynamic cellular activities within live cardiac tissue.

8.
Macromol Biosci ; : e2400359, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283817

RESUMO

Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, an adeno-associated virus (AAV)-eluting polymer coating is engineered for gradient refractive index (GRIN) lenses enabling the expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance the understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease.

9.
Proc Natl Acad Sci U S A ; 121(40): e2406294121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312670

RESUMO

In the lower respiratory tract, the alveolar spaces are divided from the bloodstream and the external environment by only a few microns of interstitial tissue. Alveolar macrophages (AMs) defend this delicate mucosal surface from invading infections by regularly patrolling the site. AMs have three behavior modalities to achieve this goal: extending cell protrusions to probe and sample surrounding areas, squeezing the whole cell body between alveoli, and patrolling by moving the cell body around each alveolus. In this study, we found Rho GTPase, cell division control protein 42 (CDC42) expression significantly decreased after berry-flavored e-cigarette (e-cig) exposure. This shifted AM behavior from squeezing to probing. Changes in AM behavior led to a reduction in the clearance of inhaled bacteria, Pseudomonas aeruginosa. These findings shed light on pathways involved in AM migration and highlight the harmful impact of e-cig vaping on AM function.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Macrófagos Alveolares , Pseudomonas aeruginosa , Macrófagos Alveolares/metabolismo , Animais , Pseudomonas aeruginosa/fisiologia , Vapor do Cigarro Eletrônico/efeitos adversos , Vaping/efeitos adversos , Proteína cdc42 de Ligação ao GTP/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL
10.
ACS Sens ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228132

RESUMO

Intravital microscopy (IVM) is a valuable method for biomedical characterization of dynamic processes, which has been applied to many fields such as neuroscience, oncology, and immunology. During IVM, vibration suppression is a major challenge due to the inevitable respiration and heartbeat from live animals. In this study, taking liver IVM as an example, we have unraveled the vibration inhibition effect of liquid bridges by studying the friction characteristics of a moist surface on the mouse liver. We confirmed the presence of liquid bridges on the liver through fluorescence imaging, which can provide microscale and nondestructive liquid connections between adjacent surfaces. Liquid bridges were constructed to sufficiently stabilize the liver after abdominal dissection by covering it with a polymer film, taking advantage of the high adhesion properties of liquid bridges. We further prototyped a microscope-integrated vibration-damping device with adjustable film tension to simplify the sample preparation procedure, which remarkably decreased the liver vibration. In practical application scenarios, we observed the process of liposome phagocytosis by liver Kupffer cells with significantly improved image and video quality. Collectively, our method not only provided a feasible solution to vibration suppression in the field of IVM, but also has the potential to be applied to vibration damping of precision instruments or other fields that require nondestructive ″soft″ vibration damping.

11.
Cell ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276776

RESUMO

A comprehensive understanding of physio-pathological processes necessitates non-invasive intravital three-dimensional (3D) imaging over varying spatial and temporal scales. However, huge data throughput, optical heterogeneity, surface irregularity, and phototoxicity pose great challenges, leading to an inevitable trade-off between volume size, resolution, speed, sample health, and system complexity. Here, we introduce a compact real-time, ultra-large-scale, high-resolution 3D mesoscope (RUSH3D), achieving uniform resolutions of 2.6 × 2.6 × 6 µm3 across a volume of 8,000 × 6,000 × 400 µm3 at 20 Hz with low phototoxicity. Through the integration of multiple computational imaging techniques, RUSH3D facilitates a 13-fold improvement in data throughput and an orders-of-magnitude reduction in system size and cost. With these advantages, we observed premovement neural activity and cross-day visual representational drift across the mouse cortex, the formation and progression of multiple germinal centers in mouse inguinal lymph nodes, and heterogeneous immune responses following traumatic brain injury-all at single-cell resolution, opening up a horizon for intravital mesoscale study of large-scale intercellular interactions at the organ level.

12.
Cell Rep ; 43(10): 114771, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39325624

RESUMO

Pial collaterals provide protection from ischemic damage and improve the prognosis of stroke patients. The origin or precise sequence of events underlying pial collateral development is unclear and has prevented clinicians from adapting new vascularization and regeneration therapies. We use genetic lineage tracing and intravital imaging of mouse brains at cellular resolution to show that during embryogenesis, pial collateral arteries develop from extension and anastomoses of pre-existing artery tips in a VegfR2-dependent manner. This process of artery tip extension occurs on pre-determined microvascular tracks. Our data demonstrate that an arterial receptor, Cxcr4, earlier shown to drive artery cell migration and coronary collateral development, is dispensable for the formation and maintenance of pial collateral arteries. Our study shows that collateral arteries of the brain are built by a mechanism distinct from that of the heart.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39323386

RESUMO

Intravital microscopy enables direct observation of cell biology and physiology at subcellular resolution in real time in living animals. Implanted windows extend the scope of intravital microscopy to processes extending for weeks or even months, such as disease progression or tumor development. However, a question that must be addressed in such studies is whether the imaging window, like any foreign body, triggers an inflammatory response, and if that response alters the biological process under investigation. To directly evaluate this question, we conducted large-scale intravital microscopy of the kidney of LysM-EGFP mice over time after implantation of abdominal imaging windows. These studies demonstrate that windows stimulated a variety of changes consistent with a foreign body response. Within a few days of implantation, leukocytes were recruited to the window and the region between the window and kidney where, over the next 16 days, they increased in number in an expanding volume that developed a new vascular network. These changes were accompanied by a dramatic increase in glomerular albumin permeability within 2 - 5 days of implantation. Similar results were obtained from mice implanted with windows coated with PLL-g-PEG, but not from immune-deficient mice. These studies demonstrate the importance of evaluating whether implanted windows induce an inflammatory response, and whether that response impacts the processes under evaluation in longitudinal intravital microscopy studies.

14.
Gastro Hep Adv ; 3(7): 954-964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286622

RESUMO

Background and Aims: Secretion and transport of intestinal chylomicrons (CMs) via lymphatics to the blood circulation is stimulated primarily by fat ingestion, whereas several other factors have also been shown to play important roles in regulating CM secretion rate. Among these factors, active regulation of lymphatic pumping has not been appreciated to date. The gut peptide and intestinal growth factor glucagon-like peptide-2 (GLP-2) has emerged as a robust enhancer of intestinal lipid mobilization and secretion. The present study aims to elucidate GLP-2's impact on lacteal contractility and assess enteric nervous system (ENS) involvement in GLP-2-induced effects on lipid mobilization. Methods: Using intravital imaging of a prospero-related homeobox 1-enhanced green fluorescent protein rat model, we assessed GLP-2's effect on lacteal contractility, in the presence and absence of the ENS inhibitor mecamylamine (MEC). Concurrently, to explore the physiological relevance, we examined GLP-2's impact on lymph flow and triglyceride (TG) output in vivo in a rat lymph fistula model. Results: GLP-2 significantly increased lacteal contractility, and this effect was inhibited by MEC. In the rat lymph fistula model, GLP-2 increased lymph flow, lymph volume, cumulative lymph volume, and TG output while reducing lymph TG concentration. MEC administration blocked these effects of GLP-2. Peak enhancement of lacteal contractility and enhancement of lymph flow in vivo occurred simultaneously with maximal effect at 15-20 minutes post GLP-2 administration, suggesting that GLP-2 enhances lipid transport by stimulating lymphatic contractility. Conclusion: For the first time, through imaging and concurrent rat lymphatic fistula studies, we demonstrated active regulation of lymphatic contractility as a key determinant of CM secretion and that intact ENS was required to observe this effect.

15.
Microvasc Res ; 156: 104732, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39147360

RESUMO

Fluorescence intravital microscopy captures large data sets of dynamic multicellular interactions within various organs such as the lungs, liver, and brain of living subjects. In medical imaging, edge detection is used to accurately identify and delineate important structures and boundaries inside the images. To improve edge sharpness, edge detection frequently requires the inclusion of low-level features. Herein, a machine learning approach is needed to automate the edge detection of multicellular aggregates of distinctly labeled blood cells within the microcirculation. In this work, the Structured Adaptive Boosting Trees algorithm (AdaBoost.S) is proposed as a contribution to overcome some of the edge detection challenges related to medical images. Algorithm design is based on the observation that edges over an image mask often exhibit special structures and are interdependent. Such structures can be predicted using the features extracted from a bigger image patch that covers the image edge mask. The proposed AdaBoost.S is applied to detect multicellular aggregates within blood vessels from the fluorescence lung intravital images of mice exposed to e-cigarette vapor. The predictive capabilities of this approach for detecting platelet-neutrophil aggregates within the lung blood vessels are evaluated against three conventional machine learning algorithms: Random Forest, XGBoost and Decision Tree. AdaBoost.S exhibits a mean recall, F-score, and precision of 0.81, 0.79, and 0.78, respectively. Compared to all three existing algorithms, AdaBoost.S has statistically better performance for recall and F-score. Although AdaBoost.S does not outperform Random Forest in precision, it remains superior to the XGBoost and Decision Tree algorithms. The proposed AdaBoost.S is widely applicable to analysis of other fluorescence intravital microscopy applications including cancer, infection, and cardiovascular disease.


Assuntos
Algoritmos , Plaquetas , Microscopia Intravital , Pulmão , Aprendizado de Máquina , Microscopia de Fluorescência , Neutrófilos , Animais , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Plaquetas/metabolismo , Interpretação de Imagem Assistida por Computador , Agregação Celular , Camundongos , Reprodutibilidade dos Testes , Valor Preditivo dos Testes , Camundongos Endogâmicos C57BL
16.
Cell ; 187(19): 5316-5335.e28, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39096902

RESUMO

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.


Assuntos
Inflamação , Mastócitos , Camundongos Endogâmicos C57BL , Neutrófilos , Animais , Mastócitos/metabolismo , Mastócitos/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Camundongos , Inflamação/metabolismo , Inflamação/imunologia , Inflamação/patologia , Leucotrieno B4/metabolismo , Transdução de Sinais , Degranulação Celular , Macrófagos/metabolismo , Macrófagos/imunologia , Armadilhas Extracelulares/metabolismo , Masculino , Feminino
17.
J Drug Target ; : 1-13, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171543

RESUMO

A major shortcoming in the treatment of mesangial cell-associated diseases such as IgA nephropathy, diabetic nephropathy, or lupus nephritis, which frequently progress to end-stage renal disease, is poor drug availability in the glomerular mesangium. Drug delivery via active targeting of nanoparticles, using ligands attached to the particle surface for target cell recognition to increase the biodistribution to the mesangium, is a promising strategy to overcome this hurdle. However, although several glomerular tissue targeting approaches have been described, so far no study has demonstrated the particles' ability to deliver sufficient drug amounts combined with an appropriate nanoparticle target retention time to trigger relevant biological effects in the mesangium. In our study, we encapsulated erastin, a ferroptosis-inducing model compound, into adenovirus-mimetic, mesangial cell-targeting nanoparticles, enabling the direct visualisation of biological effects through ferroptosis-dependent histological changes. By intravital microscopy and analysis of histological sections, we were not only able to localise the injected particles over 10 days within the target cells but also to demonstrate biological activity in the renal glomeruli. In conclusion, we have characterised adenovirus-mimetic nanoparticles as a highly suitable drug delivery platform for the treatment of mesangial cell-associated diseases and additionally provided the basis for a potential renal disease model.

18.
Cell ; 187(19): 5298-5315.e19, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168124

RESUMO

During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging. Analysis of basal cell rearrangements shows dynamic transitions from a solid-like homeostatic state to a fluid-like state allowing tissue remodeling during repair, as predicted by a minimal mathematical modeling of the spatiotemporal dynamics and fate behavior of basal cells. The basal cell layer progressively returns to a solid-like state with re-epithelialization. Bulk, single-cell RNA, and epigenetic profiling of SCs, together with functional experiments, uncover a common regenerative state regulated by the EGFR/AP1 axis activated during tissue fluidization that is essential for skin SC activation and tissue repair.


Assuntos
Pele , Cicatrização , Animais , Camundongos , Pele/metabolismo , Receptores ErbB/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Linhagem da Célula , Regeneração , Camundongos Endogâmicos C57BL , Reepitelização , Diferenciação Celular , Queratinócitos/metabolismo , Queratinócitos/citologia
19.
Methods Mol Biol ; 2828: 45-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147969

RESUMO

Multiphoton intravital microscopy (MP-IVM) is an imaging technique used for the observation of living organisms at a microscopic resolution. The tissue of interest is exposed through a window allowing imaging of cells in real time. Using MP-IVM, the temporospatial kinetics of leukocyte transendothelial migration can be visualized and quantitated using reporter mice and cell-specific fluorophore-conjugated monoclonal antibodies to track the leukocytes within and outside of vascular beds. Here we describe a method used to study neutrophil transendothelial migration and blood-brain barrier permeability in a mouse model of herpes simplex virus I (HSV) encephalitis.


Assuntos
Barreira Hematoencefálica , Modelos Animais de Doenças , Encefalite por Herpes Simples , Microscopia Intravital , Microscopia de Fluorescência por Excitação Multifotônica , Neutrófilos , Migração Transendotelial e Transepitelial , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/patologia , Camundongos , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neutrófilos/metabolismo , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Encefalite por Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Permeabilidade
20.
Int Immunol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177484

RESUMO

The immune system exhibits spatial diversity in in vivo tissues. Immune cells are strategically distributed within tissues to maintain the organ integrity. Advanced technologies such as intravital imaging and spatial transcriptomics have revealed the spatial heterogeneity of immune cell distribution and function within organs such as the liver, kidney, intestine, and lung. In addition, these technologies visualize nutrient and oxygen environments across tissues. Recent spatial analyses have suggested that a functional immune niche is determined by interactions between immune and non-immune cells in an appropriate nutrient and oxygen environment. Understanding the spatial communication between immune cells, environment, and surrounding non-immune cells is crucial for developing strategies to control immune responses and effectively manage inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA