Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Heliyon ; 10(12): e32481, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975218

RESUMO

The occurrence of excitotoxic damage caused by cerebral ischemia-reperfusion (I/R) injury is closely linked to a decrease in central inhibitory function, in which the concentration of chloride inside the cells ([Cl-]i) plays a crucial role. The outflow and inflow of [Cl-]i are controlled by KCC2 and NKCC1, which are cellular cotransporters for K+/Cl- and Na+/K+/Cl-, respectively. NKCC1/KCC2 is regulated by upstream regulators such as SPAK and OSR1, whose activity is influenced by I/R. Sevoflurane is the most commonly used and controversial general anesthetic. To elucidate the impact of sevoflurane on cerebral ischemia-reperfusion (I/R) injury and its underlying mechanism, we investigated its influence on cognitive function and the mechanism of action utilizing a rat model of I/R. By activating the kinase Spak/OSR1, we discovered that I/R damage enhanced the function of NKCC1 and inhibited the function of KCC2, which triggered an imbalance of [Cl-]i concentration, leading to neurological dysfunction and cognitive dysfunction. At the beginning of reperfusion, administration of 1.3 MAC sevoflurane for 3 h increased activation of Spak/OSR1 kinases on day 7 post-perfusion, resulting in an additional dysregulation of NKCC1 and KCC2 activity, which disappeared on day 14. Administration of Closantel, a Spak/OSR1 kinase inhibitor, to animals treated with sevoflurane reverses the additional stimulation. The research revealed that sevoflurane modified the functioning of NKCC1 and KCC2, resulting in cognitive decline by activating Spak/OSR1 kinase. However, this issue could be resolved by inhibiting Spak/OSR1. The research revealed that sevoflurane transiently alters the function of NKCC1 and KCC2, resulting in exacerbating cognitive decline. However, this can be fixed by suppressing Spak/OSR1.

2.
J Appl Toxicol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032053

RESUMO

Isoflurane, a commonly used inhaled anesthetic, has been found to have a cardioprotective effect. However, the precise mechanisms have not been fully elucidated. Here, we found that isoflurane preconditioning enhanced OGD/R-induced upregulation of miR-210, a hypoxia-responsive miRNA, in AC16 human myocardial cells. To further test the roles of miR-210 in regulating the effects of isoflurane preconditioning on OGD/R-induced cardiomyocyte injury, AC16 cells were transfected with anti-miR-210 or control anti-miRNA. Results showed that isoflurane preconditioning attenuated OGD/R-induced cardiomyocyte cytotoxicity (as assessed by cell viability, LDH and CK-MB levels), which could be reversed by anti-miR-210. Isoflurane preconditioning also prevented OGD/R-induced increase in apoptotic rate, caspase-3 and caspase-9 activities, and Bax level and decrease in Bcl-2 expression level, while anti-miR-210 blocked these effects. We also found that anti-miR-210 prevented the inhibitory effects of isoflurane preconditioning on OGD/R-induced decrease in adenosine triphosphate content; mitochondrial volume; citrate synthase activity; complex I, II, and IV activities; and p-DRP1 and MFN2 expression. Besides, the expression of BNIP3, a reported direct target of miR-210, was significantly decreased under hypoxia condition and could be regulated by isoflurane preconditioning. In addition, BNIP3 knockdown attenuated the effects of miR-210 silencing on the cytoprotection of isoflurane preconditioning. These findings suggested that isoflurane preconditioning exerted protective effects against OGD/R-induced cardiac cytotoxicity by regulating the miR-210/BNIP3 axis.

3.
Medicina (Kaunas) ; 60(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38929492

RESUMO

Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.


Assuntos
Túbulos Renais Proximais , Traumatismo por Reperfusão , Selenoproteína P , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Biomarcadores/análise , Linhagem Celular , Sobrevivência Celular , Técnicas In Vitro , Túbulos Renais Proximais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Selenoproteína P/sangue , Selenoproteína P/metabolismo , Selenito de Sódio/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38807004

RESUMO

Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.

5.
Biomed Pharmacother ; 174: 116539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615610

RESUMO

This study aimed to investigate the effects of the calpain inhibitor N-Acetyl-Leu-Leu-norleucinal (ALLN) on neuroapoptotic cell damage caused by Copper Oxide Nanoparticles (CuO-NP) and exacerbation of damage through brain ischemia/reperfusion (I/R) in a rat model. Male Wistar Albino rats (n=80) were divided into eight groups: Control, I/R, CuO-NP, CuO-NP+I/R, I/R+ALLN, CuO-NP+ALLN, CuO-NP+I/R+ALLN, and DMSO. Biochemical markers (MBP, S100B, NEFL, NSE, BCL-2, Cyt-C, Calpain, TNF-α, Caspase-3, MDA, and CAT) were measured in serum and brain tissue samples. Histological examinations (H&E staining), DNA fragmentation analysis (TUNEL) were performed, along with Caspase-3 assessment. The ALLN-treated groups exhibited significant improvements in biochemical markers and a remarkable reduction in apoptosis compared to the damaged groups (CuO-NP and I/R). H&E and Caspase-3 staining revealed damage-related morphological changes and reduced apoptosis in the ALLN-treated group. However, no differences were observed among the groups with TUNEL staining. The findings suggest that ALLN, as a calpain inhibitor, has potential implications for anti-apoptotic treatment, specifically in mitigating neuroapoptotic cell damage caused by CuO-NP and I/R.


Assuntos
Calpaína , Cobre , Modelos Animais de Doenças , Glicoproteínas , Leupeptinas , Ratos Wistar , Traumatismo por Reperfusão , Animais , Masculino , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Cobre/toxicidade , Calpaína/metabolismo , Calpaína/antagonistas & inibidores , Ratos , Apoptose/efeitos dos fármacos , Nanopartículas , Oligopeptídeos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Caspase 3/metabolismo
6.
Mil Med Res ; 11(1): 22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622688

RESUMO

BACKGROUND: Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS: The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS: Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS: This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Animais , Camundongos , Diclorodifenil Dicloroetileno , Hepatócitos , Interferon-alfa , RNA , RNA Mensageiro
7.
Mol Neurobiol ; 61(9): 7239-7255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38376762

RESUMO

Ischemia-reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress. However, the role of FAR in cerebral I/R injury remains unknown. In this study, we found that FAR reduced brain injury and neuronal viability after cerebral I/R injury. Meanwhile, administration of FAR also reduced the inflammatory response of microglia after brain injury. Mechanistically, FAR treatment directly reduced neuronal death after oxygen glucose deprivation/re-oxygenation (OGD/R) through enhancing cAMP-response element binding protein (CREB) activation to increase the expression of downstream neurotrophic factors and anti-apoptotic genes. Moreover, FAR decreased the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, inhibited microglia activation, and reduced the production of inflammatory cytokines in microglia after OGD/R treatment or LPS stimulation. The compromised inflammatory response by FAR directly promoted the survival of neurons after OGD/R. In conclusion, FAR exerted a protective effect on cerebral I/R injury by directly decreasing neuronal death through upregulating CREB expression and attenuating neuroinflammation. Therefore, FAR could be a potentially effective drug for the treatment of cerebral I/R injury.


Assuntos
Sobrevivência Celular , Microglia , Doenças Neuroinflamatórias , Neurônios , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Sobrevivência Celular/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Masculino , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Glucose/deficiência , Glucose/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose/efeitos dos fármacos , NF-kappa B/metabolismo
8.
Kaohsiung J Med Sci ; 40(2): 175-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010861

RESUMO

Intestinal ischemia/reperfusion (I/R) injury is a life-threatening condition with no effective treatment currently available. Curcumin (CCM), a polyphenol compound in Curcuma Longa, reportedly has positive effects against intestinal I/R injury. However, the mechanism underlying the protective effect of CCM against intestinal I/R injury has not been fully clarified. To determine whether the protective effect of CCM was mediated by epigenetic effects on Wnt/ß-catenin signaling, the effect of CCM was examined in vivo and in vitro. An intestinal I/R model was established in Sprague-Dawley (SD) rats with superior mesenteric artery occlusion, and Caco-2 cells were subjected to hypoxia/reoxygenation (H/R) for in vivo simulation of I/R. The results showed that CCM significantly reduced inflammatory, cell apoptosis, and oxidative stress induced by I/R insult in vivo and in vitro. Western blot analysis showed that CCM preconditioning reduced the protein levels of ß-catenin, p-GSK3ß, and cyclin-D1 and increased the protein level of GSK3ß compared with the I/R group. Overexpressing ß-catenin aggravated H/R injury, and knocking down ß-catenin relieved H/R injury by improving intestinal permeability and reducing the cell apoptosis. Moreover, Naked cuticle homolog 2(NKD2) mRNA and protein levels were upregulated in the CCM-pretreated group. 5-aza-2'-deoxycytidine (5-AZA) treatment improved intestinal epithelial barrier impairment induced by H/R. Besides, the protein levels of total ß-catenin, phosphor-ß-catenin and cyclin-D1 were reduced after overexpressing NKD2 in Caco-2 cells following H/R insult. In conclusion, Our study suggests that CCM could attenuate intestinal I/R injury in vitro and in vivo by suppressing the Wnt/ß-catenin signaling pathway via inhibition of NKD2 methylation.


Assuntos
Curcumina , Traumatismo por Reperfusão , Ratos , Humanos , Animais , Ratos Sprague-Dawley , beta Catenina/genética , beta Catenina/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Via de Sinalização Wnt/genética , Células CACO-2 , Glicogênio Sintase Quinase 3 beta/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Metilação , Isquemia , Ciclinas/metabolismo , Ciclinas/farmacologia , Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Front Immunol ; 14: 1248027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915586

RESUMO

Introduction: Ischemia reperfusion injury (IRI) confers worsened outcomes and is an increasing clinical problem in solid organ transplantation. Previously, we identified a "PtchHi" T-cell subset that selectively received costimulatory signals from endothelial cell-derived Hedgehog (Hh) morphogens to mediate IRI-induced vascular inflammation. Methods: Here, we used multi-omics approaches and developed a humanized mouse model to resolve functional and migratory heterogeneity within the PtchHi population. Results: Hh-mediated costimulation induced oligoclonal and polyclonal expansion of clones within the PtchHi population, and we visualized three distinct subsets within inflamed, IRI-treated human skin xenografts exhibiting polyfunctional cytokine responses. One of these PtchHi subsets displayed features resembling recently described T peripheral helper cells, including elaboration of IFN-y and IL-21, expression of ICOS and PD-1, and upregulation of positioning molecules conferring recruitment and retention within peripheral but not lymphoid tissues. PtchHi T cells selectively homed to IRI-treated human skin xenografts to cause accelerated allograft loss, and Hh signaling was sufficient for this process to occur. Discussion: Our studies define functional heterogeneity among a PtchHi T-cell population implicated in IRI.


Assuntos
Transplante de Órgãos , Traumatismo por Reperfusão , Camundongos , Animais , Humanos , Citocinas , Proteínas Hedgehog , Traumatismo por Reperfusão/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
11.
Biomed Pharmacother ; 167: 115472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716122

RESUMO

Opioids are widely used in clinical practice by activating opioid receptors (OPRs), but their clinical application is limited by a series of side effects. Researchers have been making tremendous efforts to promote the development and application of opioids. Fortunately, recent studies have identified the additional effects of opioids in addition to anesthesia and analgesia, particularly in terms of organ protection against ischemia-reperfusion (I/R) injury, with unique advantages. I/R injury in vital organs not only leads to cell dysfunction and structural damage but also induces acute and chronic organ failure, even death. Early prevention and appropriate therapeutic targets for I/R injury are crucial for organ protection. Opioids have shown cardioprotective effects for over 20 years, especially remifentanil, a derivative of fentanyl, which is a new ultra-short-acting opioid analgesic widely used in clinical anesthesia induction and maintenance. In this review, we provide current knowledge about the physiological effects related to OPR-mediated organ protection, focusing on the protective effect and mechanism of remifentanil on I/R injury in the heart and other vital organs. Herein, we also explored the potential application of remifentanil in clinical I/R injury. These findings provide a theoretical basis for the use of remifentanil to inhibit or alleviate organ I/R injury during the perioperative period and provide insights for opioid-induced human organ protection and drug development.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37580643

RESUMO

Myocardial ischemia/reperfusion (I/R) injury after the onset of acute myocardial infarction (AMI) can be life-threatening, and there is no effective strategy for therapeutic intervention. Here, we studied the potential of protectin D1 in protecting from I/R-induced cardiac damages and investigated the underlying mechanisms. An in vivo rat model of I/R after AMI induction was established through the ligation of the left anterior descending (LAD) artery to assess the cardiac functions and evaluate the protective effect of protectin D1. Protectin D1 protected against I/R-induced oxidative stress and inflammation in the rat model, improved the cardiac function, and reduced the infarct size in myocardial tissues. The beneficial effect of protectin D1 was associated with the up-regulation of miRNA-210 and the effects on PI3K/AKT signaling and HIF-1α expression. Together, our data suggest that protectin D1 could serve as a potential cardioprotective agent against I/R-associated cardiac defects.

13.
Ren Fail ; 45(1): 2236219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37462140

RESUMO

The biological functions of circTLK1 in acute kidney injury (AKI), which mainly results from renal ischemia-reperfusion (IR), remain largely unknown. HK-2 cell treatment with oxygen and glucose deprivation, reoxygenation, and glucose (OGD/R) was used to simulate an AKI model that was mainly caused by renal IR. Then, the circTLK1 expression level in HK-2 cells treated with OGD/R was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Functional experiments were performed with circTLK1 knockdown of HK-2 cells via Cell Counting Kit-8 (CCK8), flow cytometry (FCM), RT-qPCR, and western blotting. The circTLK1-miRNAs-mRNAs network was constructed following the ceRNA mechanism and visualized by Cytoscape software to investigate the mechanism of circTLK1 in AKI. RT-qPCR was performed to verify the relationship between circTLK1, miR-136-5p, and Bcl2. The level of miR-136-5p was knocked down to ensure its function in OGD/R-triggered apoptosis through experiments, including CCK8, FCM, RT-qPCR, and western blotting. CircTLK1 was downregulated in HK-2 cells subjected to OGD/R treatment and in mouse kidney tissues after renal IR, but the expression of miR-136-5p was the opposite. Interference with circTLK1 expression accelerated HK-2 cell apoptosis, which was overturned by miR-136-5p inhibitors. CircTLK1 targets miR-136-5p to upregulate Bcl2 expression and attenuate apoptosis in HK-2 cells. These data revealed the possible role of circTLK1 as a new biomarker for diagnosis as well as a target in AKI through the miR-136-5p/Bcl2 signaling axis.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Circular , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Apoptose/genética , Glucose/metabolismo , MicroRNAs/metabolismo , Oxigênio , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reperfusão , Traumatismo por Reperfusão/genética , RNA Circular/genética , RNA Circular/metabolismo
14.
Neurochem Res ; 48(11): 3378-3390, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37436612

RESUMO

Sodium tanshinone IIA sulfonate (STS) has shown significant clinical therapeutic effects in cerebral ischemic stroke (CIS), but the molecular mechanisms of neuroprotection remain partially known. The purpose of this study was to explore whether STS plays a protective role in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury by regulating microglia autophagy and inflammatory activity. Co-cultured microglia and neurons were subjected to OGD/R injury, an in vitro model of ischemia/reperfusion (I/R) injury with or without STS treatment. Expression of protein phosphatase 2 A (PP2A) and autophagy-associated proteins Beclin 1, autophagy related 5 (ATG5), and p62 in microglia was determined by Western blotting. Autophagic flux in microglia was observed with confocal laser scanning microscopy. Neuronal apoptosis was measured by flow cytometric and TUNEL assays. Neuronal mitochondrial function was determined via assessments of reactive oxygen species generation and mitochondrial membrane potential integrity. STS treatment markedly induced PP2A expression in microglia. Forced overexpression of PP2A increased levels of Beclin 1 and ATG5, decreased the p62 protein level, and induced autophagic flux. Silencing of PP2A or administration of 3-methyladenine inhibited autophagy and decreased the production of anti-inflammatory factors (IL-10, TGF-ß and BDNF) and induced the release of proinflammatory cytokines (IL-1ß, IL-2 and TNF-α) by STS-treated microglia, thereby inducing mitochondrial dysfunction and apoptosis of STS-treated neurons. STS exerts protection against neuron injury, and the PP2A gene plays a crucial role in improving mitochondrial function and inhibiting neuronal apoptosis by regulating autophagy and inflammation in microglia.


Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Oxigênio/metabolismo , Transdução de Sinais , Glucose/metabolismo , Proteína Beclina-1/metabolismo , Autofagia , Apoptose , Acidente Vascular Cerebral/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
15.
Apoptosis ; 28(9-10): 1285-1303, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37358747

RESUMO

Cerebral ischemia/reperfusion (I/R) injury can result in different levels of cerebral impairment, and in severe cases, death. Curcumin, an essential bioactive component of turmeric, has a rich history as a traditional medicine for various ailments in numerous countries. Experimental and clinical research has established that curcumin offers a protective effect against cerebral I/R injury. Curcumin exerts its protective effects by acting on specific mechanisms such as antioxidant, anti-inflammatory, inhibition of ferroptosis and pyroptosis, protection of mitochondrial function and structure, reduction of excessive autophagy, and improvement of endoplasmic reticulum (ER) stress, which ultimately help to preserve the blood-brain barrier (BBB) and reducing apoptosis. There is currently a shortage of drugs undergoing clinical trials for the treatment of cerebral I/R injury, highlighting the pressing need for research and development of novel treatments to address this injury. The primary objective of this study is to establish a theoretical basis for future clinical applications of curcumin by delineating the mechanisms and protective effects of curcumin against cerebral I/R injury. Adapted with permission from [1].


Assuntos
Isquemia Encefálica , Curcumina , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose , Traumatismo por Reperfusão/prevenção & controle , Isquemia Encefálica/tratamento farmacológico
16.
Front Cell Dev Biol ; 11: 1181515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228653

RESUMO

The treatment of cardiovascular and cerebrovascular diseases have undergone major advances in recent decades, allowing for a more effective prevention of cardiovascular and cerebrovascular events. However, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. Novel therapeutic strategies are critical to improve patient outcomes following cardiovascular diseases. miRNAs are small non-coding RNAs, that regulate gene expression. Here, we discuss the role of miR-182 in regulating myocardial proliferation, migration, hypoxia, ischemia, apoptosis and hypertrophy in atherosclerosis, CAD, MI, I/R injury, organ transplant, cardiac hypertrophy, hypertension, heart failure, congenital heart disease and cardiotoxicity. Besides, we also summarize the current progress of miR-182 therapeutics in clinical development and discuss challenges that will need to be overcome to enter the clinic for patients with cardiac disease.

17.
Front Pharmacol ; 14: 1143888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37050899

RESUMO

Small extracellular vesicles are nanosized vesicles (30-200 nm) that can ferry proteins, nucleic acids, and lipids between cells and therefore, have significant potential as biomarkers, drug delivery tools or therapeutic agents. SEVs of endothelial origin have been shown to -among other functions-reduce in vitro ischemia/reperfusion (I/R) injury in cardiomyocytes, but whether a pro-inflammatory state of the endothelium impairs the functionality of these SEVs remains to be elucidated. To test this, human umbilical vein endothelial cells cells were treated with TNF-α 10 ng/mL and the expression of the pro-inflammatory parameters VCAM-1, ICAM-1 and eNOS were determined by Western blot. SEVs were isolated from endothelial cells treated with or without TNF-α 10 ng/mL using size exclusion chromatography. The size and concentration of SEVs was measured by Nanoparticle Tracking Analysis. The expression of the surface marker CD81 was determined by immunoassay, whereas their morphology was assessed by electron microscopy. The function of endothelial SEVs was assessed by evaluating their cardioprotective effect in an ex vivo model of global I/R using isolated hearts from adult C57BL/6 mice. Treatment of HUVECs with TNF-α induced the expression of VCAM-1 and ICAM-1, whereas eNOS levels were decreased. TNF-α did not affect the production, size, morphology, or expression of CD81. SEVs significantly reduced the infarct size as compared with untreated mice hearts, but SEVs isolated from TNF-α treated cells were unable to achieve this effect. Therefore, a pro-inflammatory state induced by TNF-α does not alter the production of endothelial SEVs but impairs their function in the setting of I/R injury.

18.
Exp Cell Res ; 426(1): 113552, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914061

RESUMO

It is recognized that the cerebral ischemia/reperfusion (I/R) injury triggers inflammatory activation of microglia and supports microglia-driven neuronal damage. Our previous studies have shown that ginsenoside Rg1 had a significant protective effect on focal cerebral I/R injury in middle cerebral artery occlusion (MCAO) rats. However, the mechanism still needs further clarification. Here, we firstly reported that ginsenoside Rg1 effectively suppressed the inflammatory activation of brain microglia cells under I/R conditions depending on the inhibition of Toll-likereceptor4 (TLR4) proteins. In vivo experiments showed that the ginsenoside Rg1 administration could significantly improve the cognitive function of MCAO rats, and in vitro experimental data showed that ginsenoside Rg1 significantly alleviated neuronal damage via inhibiting the inflammatory response in microglia cells co-cultured under oxygen and glucose deprivation/reoxygenation (OGD/R) condition in gradient dependent. The mechanism study showed that the effect of ginsenoside Rg1 depends on the suppression of TLR4/MyD88/NF-κB and TLR4/TRIF/IRF-3 pathways in microglia cells. In a word, our research shows that ginsenoside Rg1 has great application potential in attenuating the cerebral I/R injury by targeting TLR4 protein in the microglia cells.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Fármacos Neuroprotetores/farmacologia , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
19.
Front Immunol ; 14: 1117292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926337

RESUMO

Background: Intestinal transplantation (IT) has become an important procedure for the treatment of irreversible intestinal failure. However, IT is extremely vulnerable to ischemia-reperfusion injury (IRI). Due to the limitations of static cold storage (SCS), hypothermic machine perfusion (HMP) is rapidly gaining popularity. In this study, the intestinal HMP system is established and HMP is compared with SCS. Methods: An intestinal HMP system was built. Ten miniature pigs were randomly divided into the HMP and SCS groups, and their intestines were perfused using the HMP device and SCS, respectively, followed by orthotopic auto-transplantation. Analysis was done on the grafts between the two groups. Results: Operation success rates of the surgery were 100% in both groups. The 7-day survival rate was 100% in the HMP group, which was significantly higher than that of the SCS group (20%, P< 0.05). The pathological results showed that fewer injuries of grafts were in the HMP group. Endotoxin (ET), IL-1, IL-6, IFN-γ and TNF-α levels in the HMP group were significantly lower than in the SCS group (P<0.05), whereas IL-10 levels were significantly higher (P<0.05).The intestinal expression levels of ZO-1 and Occludin were higher in the HMP group compared to the SCS group, whereas Toll-like receptor 4 (TLR4), nuclear factor kappa B (NFκB), and caspase-3 were lower. Conclusions: In this study, we established a stable intestinal HMP system and demonstrated that HMP could significantly alleviate intestinal IRI and improve the outcome after IT.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Suínos , Animais , Preservação de Órgãos/métodos , Perfusão/métodos , Traumatismo por Reperfusão/prevenção & controle , Transplante de Rim/métodos , Intestinos
20.
FASEB J ; 37(3): e22782, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786721

RESUMO

Ischemia-reperfusion (I/R) injury is a crucial factor causing liver injury in the clinic. Recent research has confirmed that human adipose-derived stem cells (ADSCs) can differentiate into functional hepatocytes. However, the mechanism of the effects of ADSCs in the treatment of liver injury remains unclear. The characteristics of ADSCs were first identified, and exosome-derived ADSCs were isolated and characterized. The function and mechanism of action of miR-183 and arachidonate 5-lipoxygenase (ALOX5) were investigated by functional experiments in HL-7702 cells with I/R injury and in I/R rats. Our data disclosed that exosome release from ADSCs induced proliferation and inhibited apoptosis in HL-7702 cells with I/R injury. The effect of miR-183 was similar to that of exosomes derived from ADSCs. In addition, ALOX5, as a target gene of miR-183, was involved in the related functions of miR-183. Moreover, in vivo experiments confirmed that miR-183 and exosomes from ADSCs could improve liver injury in rats and inhibit the MAPK and NF-κB pathways. All of these findings demonstrate that exosomes derived from ADSCs have a significant protective effect on hepatic I/R injury by regulating the miR-183/ALOX5 axis, which might provide a therapeutic strategy for liver injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fígado/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA