Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559643

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] is an important crop for food, feed, and fuel production. Particularly, sorghum is targeted for cellulosic ethanol production. Extraction of cellulose from cell walls is a key process in cellulosic ethanol production, and understanding the components involved in cellulose synthesis is important for both fundamental and applied research. Despite the significance in the biofuel industry, the genes involved in sorghum cell wall biosynthesis, modification, and degradation have not been characterized. In this study, we have identified and characterized three allelic thick leaf mutants (thl1, thl2, and thl3). Bulked Segregant Analysis sequencing (BSAseq) showed that the causal mutation for the thl phenotype is in endo-1,4-ß-glucanase gene (SbKOR1). Consistent with the causal gene function, the thl mutants showed decreased crystalline cellulose content in the stem tissues. The SbKOR1 function was characterized using Arabidopsis endo-1,4-ß-glucanase gene mutant (rsw2-1). Complementation of Arabidopsis with SbKOR1 (native Arabidopsis promoter and overexpression by 35S promoter) restored the radial swelling phenotype of rsw2-1 mutant, proving that SbKOR1 functions as endo-1,4-ß-glucanase. Overall, the present study has identified and characterized sorghum endo-1,4-ß-glucanase gene function, laying the foundation for future research on cell wall biosynthesis and engineering of sorghum for biofuel production.

2.
Plant Signal Behav ; 15(4): 1744348, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32195619

RESUMO

Cellular dynamics of KORRIGAN 1 (KOR1) is closely linked with cellulose biosynthesis and plant osmotic stress tolerance. Cycling of KOR1 between the plasma membrane (PM) and trans-Golgi Network (TGN) is maintained by sequence motifs and protein structures that are recognized by cellular transport and quality control mechanisms. Several mutations in KOR1, as well as in the host genetic background, promote the mistargeting of KOR1 and induce KOR1 accumulation in the tonoplast (TP). Yet, little is known about how retention and sorting of KOR1 are regulated in the PM-TGN cycle. Forward genetic screening for GFP-KOR1 mislocalizing phenotype resulted in several mutant lines with different localization patterns or signal intensity of GFP-KOR1. One of the identified mutants were disrupted at UDP-glucose:glycoprotein glucosyltransferase (UGGT) locus, which is essential for the protein quality control in the ER. Our finding suggests the mis/unfolded structure of KOR1 triggers the TP targeting.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulase/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Vacúolos/metabolismo , Alelos , Arabidopsis/genética , Glucosiltransferases/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética
3.
Plant J ; 87(2): 230-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27121260

RESUMO

The localization of proteins in specific domains or compartments in the 3D cellular space is essential for many fundamental processes in eukaryotic cells. Deciphering spatial organization principles within cells is a challenging task, in particular because of the large morphological variations between individual cells. We present here an approach for normalizing variations in cell morphology and for statistically analyzing spatial distributions of intracellular compartments from collections of 3D images. The method relies on the processing and analysis of 3D geometrical models that are generated from image stacks and that are used to build representations at progressively increasing levels of integration, ultimately revealing statistical significant traits of spatial distributions. To make this methodology widely available to end-users, we implemented our algorithmic pipeline into a user-friendly, multi-platform, and freely available software. To validate our approach, we generated 3D statistical maps of endomembrane compartments at subcellular resolution within an average epidermal root cell from collections of image stacks. This revealed unsuspected polar distribution patterns of organelles that were not detectable in individual images. By reversing the classical 'measure-then-average' paradigm, one major benefit of the proposed strategy is the production and display of statistical 3D representations of spatial organizations, thus fully preserving the spatial dimension of image data and at the same time allowing their integration over individual observations. The approach and software are generic and should be of general interest for experimental and modeling studies of spatial organizations at multiple scales (subcellular, cellular, tissular) in biological systems.


Assuntos
Células/ultraestrutura , Imageamento Tridimensional/métodos , Arabidopsis/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Software , Análise Espacial , Frações Subcelulares/ultraestrutura
4.
Tree Physiol ; 34(11): 1289-300, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24728296

RESUMO

KORRIGAN (KOR), encoding an endo-1,4-ß-glucanase, plays a critical role in the cellulose synthesis of plant cell wall formation. KOR sequence orthologs are duplicated in the Populus genome relative to Arabidopsis. This study reports an expression analysis of the KOR genes in Populus. The five PtrKOR genes displayed different expression patterns, suggesting that they play roles in different developmental processes. Through RNAi suppression, results demonstrated that PtrKOR1 is required for secondary cell wall cellulose formation in Populus. Together, the results suggest that the PtrKOR genes may play distinct roles in association with cell wall formation in different tissues.


Assuntos
Celulase/genética , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Populus/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Celulase/metabolismo , Duplicação Gênica , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/enzimologia , Caules de Planta/genética , Plantas Geneticamente Modificadas , Populus/citologia , Populus/genética , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de DNA
5.
New Phytol ; 164(1): 53-61, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33873484

RESUMO

Genetic improvement of cellulose production in commercially important trees is one of the formidable goals of current forest biotechnology research. To achieve this goal, we must first decipher the enigmatic and complex process of cellulose biosynthesis in trees. The recent availability of rich genomic resources in poplars make Populus the first tree genus for which genetic augmentation of cellulose may soon become possible. Fortunately, because of the structural conservation of key cellulose biosynthesis genes between Arabidopsis and poplar genomes, the lessons learned from exploring the functions of Arabidopsis genes may be applied directly to poplars. However, regulation of these genes will most likely be distinct in these two-model systems because of their inherent biological differences. This research review covers the current state of knowledge about the three major cellulose biosynthesis-related gene families from poplar genomes: cellulose synthases, sucrose synthases and korrigan cellulases. Furthermore, we also suggest some future research directions that may have significant economical impacts on global forest product industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA