Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(9): e0042324, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39171923

RESUMO

Carbapenemase-producing Klebsiella pneumoniae represents a major public health issue globally. Isolates with resistance to the newest drugs, like ceftazidime/avibactam (CZA), are increasingly reported. In this study, we analyzed the evolution of KPC-3-producing sequence type (ST) 512 K. pneumoniae strains isolated at three different times (hospitalization days 45, 56, and 78) from the same patient, two of which were observed in a pericholecystic liver abscess. The three K. pneumoniae isolates (295Kp, 304Kp, and hmv-318Kp) from the same patient were subjected to antimicrobial susceptibility testing, whole-genome sequencing, sedimentation assay, biofilm measurement, serum resistance assay, macrophage phagocytosis, and adhesion assays. KPC-producing isolate hmv-318Kp exhibited carbapenem susceptibility, hypermucoviscous (hmv) colony phenotype and CZA resistance. Virulence markers of hypervirulent Klebsiella were absent. Two non-synonymous mutations were identified in the hmv-318Kp genome comparing with isogenic strains: a single-nucleotide polymorphism (SNP) occurred in the pKpQIL plasmid, changing blaKPC-3 in the blaKPC-31 gene variant, conferring CZA resistance; and a second SNP occurred in the wzc gene of the capsular biosynthesis cluster, encoding a tyrosine kinase, resulting in the F557S Wzc protein mutation. The Klebsiella pneumoniae strain exhibiting an hmv phenotype (hmv-Kp) phenotype has been previously associated with amino acid substitutions occurring in the Wzc tyrosin kinase protein. We observed in vivo evolution of the ST512 strain to CZA resistance and acquisition of hypermucoviscosity. The pathogenetic role of the detected Wzc substitution is not fully elucidated, but other Wzc mutations were previously reported in hmv K. pneumoniae. Wzc mutants may be more frequent than expected and an underreported cause of hypermucoviscosity in K. pneumoniae clinical isolates. IMPORTANCE: Here we describe the evolution of KPC-3-producing ST512 K. pneumoniae isolated at three different times from the same patient of which the last one, from a biliary abscess, showed CZA resistance by KPC-31 production and manifested hmv colony phenotype. Hypervirulent Klebsiella pneumoniae (hv-Kp) isolates are increasingly reported worldwide. Their hypervirulent traits are associated with the presence of rmpA/A2 genes and an hmv. In this study, we identified an hmv-Kp that lacked the rmpA-D cluster but showed an amino acid substitution in the Wzc tyrosin kinase protein, involved in the capsular biosynthesis. This hmv-Kp strain emerged in vivo and evolved resistance to ceftazidime/avibactam resistance in a liver abscess of a patient. Our findings suggest that wzc mutations may be underreported, making it challenging to distinguish hv-Kp from "classic" K. pneumoniae with an hmv phenotype.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Abscesso Hepático , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Ceftazidima/farmacologia , Humanos , Infecções por Klebsiella/microbiologia , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Abscesso Hepático/microbiologia , Proteínas de Bactérias/genética , Sequenciamento Completo do Genoma , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Virulência , Evolução Molecular , Biofilmes/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
2.
Antimicrob Agents Chemother ; 68(3): e0110823, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259088

RESUMO

Klebsiella pneumoniae carbapenemase (KPC) variants have been described that confer resistance to both ceftazidime-avibactam and cefiderocol. Of these, KPC-33 and KPC-31 are D179Y-containing variants derived from KPC-2 and KPC-3, respectively. To better understand this atypical phenotype, the catalytic mechanism of ceftazidime and cefiderocol hydrolysis by KPC-33 and KPC-31 as well as the ancestral KPC-2 and KPC-3 enzymes was studied. Steady-state kinetics showed that the D179Y substitution in either KPC-2 or KPC-3 is associated with a large decrease in both kcat and KM such that kcat/KM values were largely unchanged for both ceftazidime and cefiderocol substrates. A decrease in both kcat and KM is consistent with a decreased and rate-limiting deacylation step. We explored this hypothesis by performing pre-steady-state kinetics and showed that the acylation step is rate-limiting for KPC-2 and KPC-3 for both ceftazidime and cefiderocol hydrolysis. In contrast, we observed a burst of acyl-enzyme formation followed by a slow steady-state rate for the D179Y variants of KPC-2 and KPC-3 with either ceftazidime or cefiderocol, indicating that deacylation of the covalent intermediate is the rate-limiting step for catalysis. Finally, we show that the low KM value for ceftazidime or cefiderocol hydrolysis of the D179Y variants is not an indication of tight binding affinity for the substrates but rather is a reflection of the deacylation reaction becoming rate-limiting. Thus, the hydrolysis mechanism of ceftazidime and cefiderocol by the D179Y variants is very similar and involves the formation of a long-lived covalent intermediate that is associated with resistance to the drugs.


Assuntos
Antibacterianos , Ceftazidima , Ceftazidima/farmacologia , Ceftazidima/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Cefiderocol , Klebsiella pneumoniae , Hidrólise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Combinação de Medicamentos , Compostos Azabicíclicos/farmacologia , Testes de Sensibilidade Microbiana
3.
Emerg Infect Dis ; 29(11): 2266-2274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877547

RESUMO

In February 2022, a critically ill patient colonized with a carbapenem-resistant K. pneumoniae producing KPC-3 and VIM-1 carbapenemases was hospitalized for SARS-CoV-2 in the intensive care unit of Policlinico Umberto I hospital in Rome, Italy. During 95 days of hospitalization, ceftazidime/avibactam, meropenem/vaborbactam, and cefiderocol were administered consecutively to treat 3 respiratory tract infections sustained by different bacterial agents. Those therapies altered the resistome of K. pneumoniae sequence type 512 colonizing or infecting the patient during the hospitalization period. In vivo evolution of the K. pneumoniae sequence type 512 resistome occurred through plasmid loss, outer membrane porin alteration, and a nonsense mutation in the cirA siderophore gene, resulting in high levels of cefiderocol resistance. Cross-selection can occur between K. pneumoniae and treatments prescribed for other infective agents. K. pneumoniae can stably colonize a patient, and antimicrobial-selective pressure can promote progressive K. pneumoniae resistome evolution, indicating a substantial public health threat.


Assuntos
Ceftazidima , Infecções por Klebsiella , Humanos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Meropeném/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Itália/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana , Cefiderocol
4.
Antimicrob Agents Chemother ; 67(8): e0036823, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428086

RESUMO

In 2021, Klebsiella pneumoniae sequence type 307 (ST307) strains causing pulmonary and bloodstream infections identified in a hospital in Rome, Italy, reached high levels of resistance to ceftazidime-avibactam (CZA). One of these strains reached high levels of resistance to both CZA and carbapenems and carried two copies of blaKPC-3 and one copy of blaKPC-31 located on plasmid pKpQIL. The genomes and plasmids of CZA-resistant ST307 strains were analyzed to identify the molecular mechanisms leading to the evolution of resistance and compared with ST307 genomes at local and global levels. A complex pattern of multiple plasmids in rearranged configurations, coresident within the CZA-carbapenem-resistant K. pneumoniae strain, was observed. Characterization of these plasmids revealed recombination and segregation events explaining why K. pneumoniae isolates from the same patient had different antibiotic resistance profiles. This study illustrates the intense genetic plasticity occurring in ST307, one of the most worldwide-diffused K. pneumoniae high-risk clones.


Assuntos
Antibacterianos , Infecções por Klebsiella , Humanos , Meropeném/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Proteínas de Bactérias/genética , beta-Lactamases/genética , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , Plasmídeos/genética , Carbapenêmicos , Testes de Sensibilidade Microbiana
5.
Clin Microbiol Infect ; 27(8): 1172.e7-1172.e10, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33915286

RESUMO

OBJECTIVES: Ceftazidime-avibactam (CZA) and cefiderocol are recently commercialized molecules active against highly drug-resistant bacteria, including carbapenem-resistant members of the Enterobacteriaceae. Mutants resistant to CZA have been described, notably in Klebsiella pneumoniae carbapenemase (KPC) producers. Considering the structural similarities between ceftazidime and cefiderocol, we hypothesized that resistance to CZA in KPC-producing members of the Enterobacterales may lead to cross-resistance to cefiderocol. METHODS: CZA-resistant mutants from three clinical isolates of the Enterobacterales carrying either blaKPC-2 or blaKPC-3 were selected in vitro. Mutants with increased MIC to CZA compared to the ancestral allele were cloned in a pBR322 plasmid and expressed in Escherichia coli TOP10. We evaluated the impact of these mutations on cefiderocol MICs and minimal bactericidal concentrations (MBCs), and we assessed the impact of bacterial inoculum size on cefiderocol MICs. RESULTS: We used 37 KPC mutants with increased CZA MICs. Of these, six have been described previously in clinical isolates. Compared to the wild-type alleles, increases in the cefiderocol MICs of 4- to 32-fold were observed for 75.6% of tested mutants (28/37), MICs reaching up to 4 mg/L in E. coli TOP10 for KPC-31 (D179Y-H274Y mutations). MBCs and MICs of cefiderocol were similar, confirming the bactericidal activity of this drug. Finally, when using higher inocula (107 CFU/mL), a large increase in cefiderocol MIC was observed, and all isolates were categorized as resistant. CONCLUSION: We observed that most of the CZA-resistant KPC variants have a possible impact on cefiderocol by increasing the cefiderocol MICs. In addition, cefiderocol is greatly impacted by the inoculum effect, suggesting that precautions should be taken when treating infections with a suspected high inoculum.


Assuntos
Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cefalosporinas/farmacologia , Combinação de Medicamentos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Cefiderocol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA